

Praise for CockroachDB: The Definitive Guide, Second Edition

CockroachDB isn’t just another database. It offers the benefits of relational databases,
but goes further by solving the incredibly difficult challenge of handling distributed

transactions with complete data integrity. This book provides everything you need to
effectively use CockroachDB, making this complex challenge workable.

—Rick Greenwald, retired senior director for DBMS analysis,
Gartner, Inc.

CockroachDB gives you another option that’s not strictly SQL and not strictly NoSQL. It’s
kind of this next-generation database that helps us solve a lot of challenges as we become

more dependent on data and need to scale out further and further.
—Bryan Call, senior principal engineer, Route

Today’s customers are focused on building resilient, highly durable systems—such as
mission-critical trading applications—that need to operate seamlessly across multiple

regions. CockroachDB ensures their resilience, at scale, effortlessly.
—Peter Williams, global head of financial services partner

technology, AWS

Modern distributed SQL systems bring together the best ideas of databases from the
last 50 years: the relational model, strong consistency guarantees, and elastic scalability.

This trinity is what modern applications need to stay in the game.
—Andy Pavlo, associate professor of databases,

Carnegie Mellon University; cofounder, OtterTune

Guy Harrison, Jesse Seldess, Ben Darnell & Rob Reid

CockroachDB: The Definitive Guide
Distributed Data at Scale

SECOND EDITION

978-1-098-17984-7

[LSI]

CockroachDB: The Definitive Guide
by Guy Harrison, Jesse Seldess, Ben Darnell, and Rob Reid

Copyright © 2025 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Angela Rufino
Production Editor: Gregory Hyman
Copyeditor: Dwight Ramsey
Proofreader: Stephanie English

Indexer: nSight, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2025: Second Edition

Revision History for the Second Edition
2025-03-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098179847 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. CockroachDB: The Definitive Guide, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Cockroach Labs. See our statement of editorial
independence (https://oreil.ly/editorial-independence).

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098179847
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. xvii

Part I. Introduction to CockroachDB

1. Introduction to CockroachDB. 3
A Brief History of Databases 3

Pre-Relational Databases 4
The Relational Model 5
Implementing the Relational Model 7
Transactions 7
The SQL Language 8
The RDBMS Hegemony 8
Enter the Internet 9
The NoSQL Movement 11
The Emergence of Distributed SQL 11

The Advent of CockroachDB 13
CockroachDB Design Goals 14
CockroachDB Releases 16

CockroachDB in Action 17
CockroachDB at Netflix 17
CockroachDB at Devsisters 18
CockroachDB at DoorDash 18
CockroachDB at Bose 18
CockroachDB at Form3 19
CockroachDB at Hard Rock Digital 19
CockroachDB at Spreedly 19

v

CockroachDB at Route 20
Summary 20

2. CockroachDB Architecture. 21
The CockroachDB Cluster Architecture 22
The CockroachDB Software Stack 24
The CockroachDB SQL Layer 25
From SQL to Key-Values 27

Tables as Represented in the KV Store 27
Column Families 28
Indexes in the KV Store 29
Inverted Indexes 30
The STORING Clause 30
Table Definitions and Schema Changes 31

The CockroachDB Transaction Layer 32
MVCC Principles 33
Transaction Workflow 34
Write Intents 35
Parallel Commits 36
Transaction Cleanup 37
Overview of Transaction Flow 37
Read/Write Conflicts 39
Clock Synchronization and Clock Skew 40

The CockroachDB Distribution Layer 41
Meta Ranges 41
Gossip 42
Leaseholders 42
Range Splits 43
Multiregion Distribution 44

The CockroachDB Replication Layer 45
Raft 45
Raft and Leaseholders 46
Closed Timestamps and Follower Reads 46

The CockroachDB Storage Layer 47
Log-Structured Merge Trees 47
SSTables and Bloom Filters 48
Deletes and Updates 49
Multiversion Concurrency Control 50
The Block Cache 50

Summary 50

vi | Table of Contents

3. Getting Started. 53
Installation 53

Installing CockroachDB Software 53
Creating a CockroachDB Cloud Basic Instance 57
Starting a Local Single-Node Server 59
Starting Up CockroachDB in a Docker Container 60
Starting Up a Secure Server 62
Shutting Down the Server 63
Remote Connection 63
Creating a Kubernetes Cluster 64
Creating a Cluster with Terraform 66

Using a GUI Client 70
Exploring CockroachDB 71

Adding Some Data 71
Databases and Tables 73
Issuing SQL 74
The DB Console 75

Working with Programming Languages 75
Connecting to CockroachDB from Node.js 76
Connecting to CockroachDB from Java 77
Connecting to CockroachDB from Python 78
Connecting to CockroachDB from Go 79

Summary 81

4. CockroachDB SQL. 83
SQL Language Compatibility 83
Querying Data with SELECT 84

The SELECT List 85
The FROM Clause 85
Joins 85
Anti-Joins 86
Cross Joins 87
Set Operations 87
Group Operations 88
Subqueries 88
Correlated Subquery 89
Lateral Subquery 89
The WHERE Clause 90
Common Table Expressions 90
ORDER BY 91
Window Functions 92
Other SELECT Clauses 93

Table of Contents | vii

CockroachDB Arrays 93
Working with JSON 95
Summary of SELECT 97

Creating Tables and Indexes 97
Column Definitions 99
Computed Columns 101
Data Types 101
Primary Keys 103
Constraints 103
Indexes 104
Vectors 107
CREATE TABLE AS SELECT 109
Altering Tables 109
Dropping Tables 110
Views 111
Functions 111
Procedures 114

Inserting Data 115
UPDATE 118
UPSERT 119
DELETE 120
TRUNCATE 122
IMPORT INTO 122
Transactional Statements 122

BEGIN Transaction 123
SAVEPOINT 124
COMMIT 124
ROLLBACK 124
SELECT FOR UPDATE 124
SELECT FOR SHARE 125
AS OF SYSTEM TIME 126

Other Data Definition Language Targets 127
Administrative Commands 128
The Information Schema 129
Summary 129

Part II. Developing Applications with CockroachDB

5. CockroachDB Schema Design. 133
Logical Data Modeling 134

Normalization 135

viii | Table of Contents

Don’t Go Too Far 136
Primary Key Choices 137
Special-Purpose Designs 138

Physical Design 138
Entities to Tables 139
Attributes to Columns 140
Primary Key Design 141
Foreign Key Constraints 146

Denormalization 147
Replicating Columns to Avoid Joins 147
Summary Tables 149
Vertical Partitioning 149
Horizontal Partitioning 150
Repeating Groups 151

JSON Document Models 151
JSON Document Antipatterns 153
Indexing JSON Attributes 153
Using JSON or Arrays to Avoid Joins 154

Indexes 156
Index Selectivity 157
Index Break-Even Point 157
Index Overhead 159
Composite Indexes 160
Covering Indexes 161
Composite and Covering Index Performance 162
Guidelines for Composite Indexes 163
Indexes and Null Values 163
Inverted Indexes 163
Partial Indexes 164
Sort-Optimizing Indexes 164
Expression Indexes 165
Full-Text Indexes 167
Spatial Indexes 169
Hash-Sharded Indexes 170
Measuring Index Effectiveness 170

Summary 172

6. Application Design and Implementation. 175
CockroachDB Programming 175

Performing CRUD Operations 176
Connection Pools 179
Prepared and Parameterized Statements 183

Table of Contents | ix

Batch Inserts 185
Pagination of Results 188
Projections 191
Client-Side Caching 192

Managing Transactions 194
Transaction Retry Errors 195
Implementing Transaction Retries 197
Automatic Transaction Retries 198
Using FOR UPDATE to Avoid Transaction Retry Errors 199
Reducing Contention by Eliminating Hot Rows 201
Reducing Transaction Elapsed Time 202
Reordering Statements 203
Time Travel Queries 203
Ambiguous Transactions Errors 204
Deadlocks 205
Transaction Priorities 205

Working with ORM Frameworks 206
Row-Level TTL 210
Summary 212

7. Application Migration and Integration. 213
Migration Objectives 214

Database Consolidation 214
Failover Regions 215
Fragile Data Integrations 216
Unnecessary Caching Tier 217
Unnecessary Data Warehouse Workloads 218
Application Silos 218

Loading Data 218
File Locations 219
Importing from userfile Storage 220
Importing from Cloud Storage 222
Import Performance 223

Migrating from Another Database 224
Extracting and Converting DDL 224
General Considerations When Converting DDL 230
Exporting Data 231
Migrating Schemas to CockroachDB 232
Loading Data into CockroachDB with MOLT Fetch 233
Loading Data into CockroachDB with IMPORT INTO 235
Directly Importing PostgreSQL or MySQL Dumps 236
Synchronizing and Switching Over 237

x | Table of Contents

Updating Application Code 241
Mainframe Migrations 242
Exporting CockroachDB Data 243
Change Data Capture 245

Core Change Data Capture 245
Using the Changefeed Programmatically 248
Enterprise Change Data Capture 249
CDC Queries 250
Change Data Capture to Kafka 256
Change Data Capture to Pulsar 257
Change Data Capture to Snowflake 259

Summary 264

8. SQL Tuning. 265
Finding Slow SQL 265
Explaining and Tracing SQL 267

EXPLAIN ANALYZE 272
EXPLAIN Options 273
EXPLAIN DEBUG 276

Changing SQL Execution 278
Optimizing Table Lookups 279
Optimizing Joins 289
Join Methods 290
Optimizing Sorting and Aggregation 300
Disk Sorts 303
Optimizing DML 305

Optimizing the Optimizer 307
Optimizer Statistics 307
Viewing Statistics 307
Automatic Statistics 308
Manually Collecting Statistics 309

Summary 310

Part III. Deploying and Administering CockroachDB

9. Planning a Deployment. 313
Know Your Requirements 314
Comparison of Deployment Options 314
CockroachDB Cloud Basic Deployments 317
CockroachDB Cloud Standard Deployments 319
Single-Region Advanced Deployments 319

Table of Contents | xi

Common Planning Tasks—Advanced Deployments 319
Benchmarking and Capacity Planning 320
CockroachDB Cloud Deployments 322
Self-Hosted on a Cloud Platform 324
Self-Hosted “Bare-Metal” On-Premises 325
Other Self-Hosted Considerations 327
Self-Hosted Kubernetes 327

Configuring for Self-Hosted High Availability 329
Disk Failure 329
Node Failures 329
Network Failure 330
Zone and Region Topologies 331

Summary 332

10. Single-Region Deployment. 335
Deploying On-Premises or On-Cloud 335

Firewall Configuration 336
Operating System Configuration 336
Clock Synchronization On-Premises 337
Clock Synchronization on Cloud Platforms 338
Creating Certificates 340
Configuring the Nodes 342
Creating a Ballast File 343
Initializing the Cluster 344
Creating the First User 345
Installing a Load Balancer (On-Premises) 347
Cloud Load Balancers 349
Configuring Regions and Zones 350

Deploying on Kubernetes 350
Initializing the Operator 351
Initializing the Cluster 352
Creating a Client Pod 354
Load Balancing 354
Other Kubernetes Tasks 356

Summary 356

11. Multiregion Deployment. 359
Multiregion Concepts 359

Regions and Zones 359
Survival Goals 361
Locality Rules 363
Planning Your Multiregion Deployment 365

xii | Table of Contents

Deploying in Multiregion 365
Converting to a Multiregion Database 368
Configuring Regional by Row 369
Setting Regional Survival Goal 372
Super Regions 373

Summary 374

12. Backup and Disaster Recovery. 375
Backups 376

The BACKUP Command 377
Backup Destinations 378
Full Backup 379
Table- and Database-Level Backups 379
Incremental Backups 380
AS OF SYSTEM TIME Backup 380
Encrypted Backups 381
WITH REVISION HISTORY 381
SHOW BACKUP 382
Managing Backup Jobs 383
Scheduling Backups 384
Locality-Aware Backups 387

Restoring Data 387
Backup Validation 390
Exporting Data 391
Disaster Recovery Best Practices 392

Backup Scheduling and Configuration 392
Recovering from Human Errors 393

Two–Data Center Replication 394
Physical Cluster Replication 394
Logical Data Replication 398

Summary 402

13. Security. 403
Firewall Configuration 404

IP Allowlist with CockroachDB Cloud 404
Egress Perimeter Controls 405
Private Connectivity and VPC Peering 406
Native Linux Firewall 410
Configuring a Firewall in GCP 412
Configuring a Firewall in AWS 413
Configuring Ports for Microsoft Azure 414

Encryption and Server Certificates 415

Table of Contents | xiii

Encryption at Rest 416
Customer-Managed Encryption Keys 418

Authentication Mechanisms 423
Standard Authentication 423
Advanced Authentication 424

Authorization 424
Managing Users 425
Managing Privileges 425
Fine-Grained Access Control with Views 427

Logging and Auditing 428
Security Best Practices 431
Summary 432

14. Administration and Troubleshooting. 433
Monitoring 433

CockroachDB Cloud Advanced Alerts 434
CockroachDB Cloud Standard Alerts 435
CockroachDB Cloud Basic Alerts 435
Availability Monitoring 436
The Cloud API 437
The Cluster API 441
Monitoring and Alerting with Prometheus 443
The Metrics Export Endpoint 444
Monitoring and Alerting with Datadog 445

Log Configuration 446
Log Channels 449
Log Format 450
Filter Levels 451
Log Destinations 452
Logging to Fluentd 452
Redaction 453
Logs in Cloud Deployments 453

Cluster Management 454
Upgrading the Cluster Version 454
Adding Nodes to a Cluster 456
Decommissioning Nodes 457

Troubleshooting 460
Clock Synchronization Errors 461
Node Liveness 461
Networking Issues 462
Loss of Client Connectivity 464
Running Out of Disk Space 464

xiv | Table of Contents

Working with CockroachDB Support Resources 464
Summary 465

15. Cluster Optimization. 467
Tuning Versus Firefighting 467
Workload Optimization 469

Detecting Problem Workloads 469
Review of Workload Optimization Strategies 472
Indexing 472
Ad Hoc or Analytic Queries 473

Cluster Balance 475
Causes of Imbalance 476
Admission Control 485

Network 486
Memory Optimization 488
Key-Value Cache 489

max-sql-memory 490
Host Memory 491

Disk I/O 491
Scaling Out 494
Summary 494

Index. 497

Table of Contents | xv

Preface

Welcome to CockroachDB: The Definitive Guide, and thank you for being here!
With this book, we want to help you learn to build and deploy applications with
CockroachDB, the distributed SQL database that meets you where you’re at on your
journey—in the cloud, on-premises, or hybrid.

First, the question everyone asks: Why the name CockroachDB?

One immutable fact of engineering is that things break. At large enough scale, things
are breaking all the time. The kinds of failures that might happen once a year
on a single machine become daily occurrences when you’re running thousands of
them. A system that aspires to handle large scale must treat fault tolerance as a core
responsibility. This was one of the key insights of Google’s MapReduce framework. By
requiring all computation to fit within a relatively restrictive framework, it became
straightforward for the system to automatically rerun the necessary pieces of work
after a failure.

We believe that this is how it should be: highly available replication should be the
default state of a database from Day One, not the result of painstaking configuration
work. And looking ahead to Day Two (or Day Two Hundred), the database must
be able to grow along with the application so that runaway success is a cause for
celebration, not panic.

When Cockroach Labs set out to build a relational database from scratch, we wanted
to bring consistency, native resilience, data locality, and massive scale to modern
applications. Our vision was of a system able to colonize any resource that you
gave it and then relentlessly optimize itself. A database that would use available
space and reach equilibrium across a coordinated set of distributed nodes so that
it would not only incorporate new resources, but—if a machine or data center or
even an entire region went down—the database would simply equalize the remaining
available resources.

xvii

We aimed to build a database that would be impossible to eradicate…just like peripla‐
neta brunnea, the pesky common cockroach. And so CockroachDB was born.

Building CockroachDB
CockroachDB’s origin is a tale of necessity. Quite literally, Spencer Kimball, Peter
Mattis, and I, Ben Darnell, set out to build the relational database that we ourselves
needed.

After working together at Google, the three of us went in different directions for a
while. Eventually we ended up back together (along with Spencer’s brother Andy,
a Microsoft SQL Server veteran) at a startup called Viewfinder, building an applica‐
tion for photo organization and social sharing. We, of course, hoped it would be
successful, so we wanted to build for scale. After all, as Spencer says, “Sometimes shit
happens. And, at scale, shit’s always happening.”

It turns out that, given the history of that project, we didn’t do well enough to
ever need massive scalability, but we wanted to plan for it from the beginning. We
also didn’t want to lock ourselves into a monolithic database, sharding MySQL or
anything like that. We had been down that road before and knew it didn’t lead where
we wanted to go. This left us looking at NoSQL options as the best alternative and
eventually we settled on DynamoDB.

DynamoDB ticked a lot of boxes: it’s scalable, it’s fast, it’s predictable. It’s very similar
to Bigtable, which I had used as the backend for Google Reader while I was at Google.
And so, on paper at least, we really liked that model. But as we got experience with it,
we realized we had a couple of fundamental problems with NoSQL.

The biggest one was we found that we really needed secondary indexes. The Big‐
table/DynamoDB model is really primary keys only; there’s no concept of secondary
indexes. To get them, we had to build our own partial implementation of transactions
on top of DynamoDB, which was workable. Once we were using this system, how‐
ever, we found a subsequent problem. DynamoDB on its own is very fast, predictable,
and scalable—but once you start doing things that combine multiple records, as we
were doing with our secondary indexes, then things got difficult.

Ultimately, we came up with a system that worked, but the layering of transactions
and indexes on top of DynamoDB was inefficient, both in terms of performance and
our engineering efforts.

During this time we did start talking about the idea of building a database ourselves,
but Viewfinder was a startup with a small team. We decided, You know, DynamoDB
is not ideal, but it exists and we can use it today, so that’s what we’ll do. But then a

xviii | Preface

year or two later Square bought Viewfinder, and we found out they were struggling
with sharded MySQL. We realized then, Okay, it’s not just us, this is a real database
need that’s not getting met. At Square we were now in a good position to try building
a system that was both inherently scalable and supported secondary indexes. So that’s
where the effort really started in earnest.

Spencer started on it as a side project on nights and weekends at first. And then
he got some more contributors, and eventually it even became an official project
at Square. But we knew that the real destiny of this project was to serve the entire
database market, so that’s when we decided to leave Square and start a company to do
just that: Cockroach Labs was founded in 2015.

Next Steps
Having set out to build a database that is as indestructible as an intrusion of cock‐
roaches, the next question was, of course, what other capabilities it would need.

We believed that the right approach was to embrace distributed transactions from the
start and make them an integral part of the architecture. And while Structured Query
Language (SQL) is hardly anyone’s idea of a perfect query language, it is the one that
everyone knows, with a time-tested feature set. SQL’s declarative schema management
and statistics-based query optimization give operators powerful tools to manage their
application’s performance at runtime.

So the story of getting to CockroachDB version 1.0 was solving the new problem
of scale plus transactions using SQL. The result is a globally distributed SQL
database built on top of a transactional and consistent key-value (KV) store. The
primary design goals are support for atomic, consistent, isolated, and durable (ACID)
transactions; horizontal scalability; low latency/high availability; and survivability.
CockroachDB implements a Raft consensus algorithm for consistency and aims to
tolerate disk, machine, rack, and even data center failures with minimal disruption
and no manual intervention.

Once we started building and deploying this, we found that the greatest interest in
what we were doing came from people working with global deployments. It turns out
this is something Cockroach is uniquely capable of handling, and so with version 2.0
we started building more and more features for global and geographic distribution.

It’s been a long time since we launched CockroachDB 2.0 and multiregion.
Since then, the biggest developments have been CockroachDB Cloud followed by
CockroachDB Cloud Basic. These fulfilled our next mission: to make data easy.

Preface | xix

Our Viewfinder startup days showed us the need for a database that can be used
for projects from Day One and would also grow along with it, without breaking the
bank. You can self-host CockroachDB locally on a laptop, on a corporate dev cluster
or private cloud, as well as on any public cloud infrastructure, but the price of entry
is still fairly substantial. The first step toward making CockroachDB accessible was
to take away the operational burden from the user, and we achieved that with our
cloud-hosted, fully managed service now called CockroachDB Cloud Advanced.

Now we have added CockroachDB Cloud Basic to give users the low-cost or even
no-cost foot in the door that you can use from the beginning, and then it scales up
affordably with your usage. It’s now inexpensive enough for everyone to simply build
multiregion by default.

What comes after that? Well, we are continuing to explore ways to use cloud native
features to gain even greater efficiencies and drive down operating costs. Things like
looking at the menu of various storage solutions that the clouds offer and choosing
the appropriate ones for our different kinds of storage needs instead of using block
storage devices for everything as we currently do.

Along the way, we’ve added user-defined functions and stored procedures. This is a
lightning rod for discussion because people have strong opinions, but I think that
when you combine user-defined functions and stored procedures with a scalable
database, it gets really interesting. It can really transform the way you think about
your application architecture because it lets you shift more of your logic into the
database.

More speculatively? As CockroachDB’s cofounder, I’d like to explore ways that you
could host your entire application, just straight out of the database, using stored
procedures. Even saying that out loud is going to be a bit controversial because that’s
the sort of thing that people tried to do back in, like, 1998 and, we admit, it didn’t
work well then.

However, I think things have evolved to the point that now may be the right time.
That’s still very speculative, just something we’re thinking about and not something
that is officially on the Cockroach Labs roadmap at this time. But we’d like to try to
hack out some sort of prototype instead of just talking about it. Maybe now that this
book is published, that will free up some time to experiment.

Why We Wrote This Book
This book aims to help you, the reader, understand the architecture and capabilities
of CockroachDB as well as suitable use cases for CockroachDB. By the end of this
book, you will be able to get started with CockroachDB, build effective applications
on it, and, ultimately, run a cluster in production.

xx | Preface

The chapters teach developers, architects, and DevOps teams how to build, optimize,
and manage applications that run on CockroachDB. We wrote this book to give any
developer, no matter how they want to work with CockroachDB, the knowledge and
tools they need to do it effectively.

— Ben Darnell
March 2025

New York City

Who This Book Is For
Whether you’re an architect designing systems, a developer crafting code, or a
DevOps engineer streamlining deployments, this book will guide you through every‐
thing you need to know about CockroachDB—from fundamental concepts and basic
operations to advanced features and production deployment strategies:

Innovative developers
CockroachDB: The Definitive Guide is for developers building modern applica‐
tions, whether in a small startup or a large enterprise. This guide will teach
developers how to build and ship apps with fewer obstacles using a powerful
distributed SQL database that just works.

Architects
The Definitive Guide is for modern architects delivering scalable, resilient apps
across their IT ecosystem. Architects will learn how to design distributed applica‐
tions to provide low latency, high availability, and faster performance.

DevOps teams
The Definitive Guide is for strategic IT operators managing applications with
data-intensive workloads. Operators will learn how to optimize CockroachDB’s
inherent abilities of scale and resilience, efficiently distributing data to meet any
workload demand—wherever it’s deployed.

Those already familiar with distributed systems will discover the benefits of strong
data correctness and consistency guarantees as well as optimizations for delivering
low-latency transactions to users anywhere in the world.

It includes specific guidance for anyone transitioning from a monolithic database
(e.g., MySQL or PostgreSQL) to a distributed architecture, as well as practical exam‐
ples for anyone more familiar with NoSQL systems.

Preface | xxi

How This Book Is Organized
This book contains 15 chapters divided into three sections:

• Part I, “Introduction to CockroachDB”, establishes the historical context of•
CockroachDB, covering the evolution of databases and the emergence of dis‐
tributed cloud databases. Readers cover core concepts of distributed SQL, then
dive into the architecture and capabilities of CockroachDB, followed by examina‐
tions of suitable use cases for CockroachDB. Part I ends with a hands-on guide
to getting started, both with a local installation and Cockroach Labs’ free cloud
service, and a thorough guide to CockroachDB’s SQL dialect.

• Part II, “Developing Applications with CockroachDB”, covers the fundamentals•
of CockroachDB schema design. Next, readers work through application design
and implementation as well as integration with and/or migration from other
databases. You will practice working with data in CockroachDB, including man‐
aging transactions, exploring change data capture, and building SQL tuning
skills.

• Part III, “Deploying and Administering CockroachDB”, covers the planning and•
execution of single and multiregion deployments. Essential topics include backup
and disaster recovery; security; monitoring, administration, and troubleshooting;
and cluster optimization.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xxii | Preface

This element signifies a general note.

This element indicates a warning or caution.

Accessing the Book’s Images Online
Readers of the printed book can access full-color, large-format versions of the images
online at https://oreil.ly/cockroachDB-definitive-guide-figs.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/cockroachDB-definitive-guide-code.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “CockroachDB: The
Definitive Guide, 2nd ed., by Guy Harrison, Jesse Seldess, Ben Darnell, and Rob Reid
(O’Reilly). Copyright 2025 O’Reilly Media, Inc., 978-1-098-17984-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xxiii

https://oreil.ly/cockroachDB-definitive-guide-figs
https://oreil.ly/cockroachDB-definitive-guide-code
mailto:support@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/cockroachDB-def-guide-2e.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Writing this book was a truly collaborative venture, and the authors are thankful for
the many people who helped along the way, especially Andy Pavlo, Sean Chittenden,
and Matt Aslett, who provided their knowledgeable opinions around Distributed
SQL and CockroachDB to be shared in (and on) this book.

The authors would like to thank the vital open source community that supports and
contributes to CockroachDB, as well as the many Roachers who joined Cockroach
Labs to help us continually extend and improve the database. Our special thanks go

xxiv | Preface

http://oreilly.com
http://oreilly.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/cockroachDB-def-guide-2e
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

to the reviewers who applied their subject matter expertise—gained from building
CockroachDB—to careful technical review of each chapter. Andy Woods, Vy Ton,
Piyush Singh, Liv Lobo, Abbey Russell, Keith McClellan, Chris Ireland, Greg Turn‐
quist, Alicia Lu, Rohan Joshi, and David Bressler, all from Cockroach Labs, we are
grateful for your thoughtful suggestions and keen-sighted corrections that helped
improve every part of this book. We are equally grateful to external reviewers Alan
Beaulieu, consultant, and software engineer and machine learning specialist Patrick
Deziel from Rotational Labs, LLC. We would also like to thank Jessica Edwards for
shepherding the process from Day One, and Michelle Gienow for then taking over
and helping us cross the finish line.

We’d like to thank the team from O’Reilly whose consistent diligence and profession‐
alism kept us on track and ensured we created a high-quality and useful book.
Thanks especially to Angela Rufino, Andy Kwan, and Sharon Cordesse: it really was
a pleasure to work with you. Additional thanks to the production team: Christopher
Faucher, Gregory Hyman, Stephanie English, Dwight Ramsey, Kim Cofer, Johnna
VanHoose Dinse, and Kate Dullea.

Guy Harrison
I’d like to thank all the folks at O’Reilly and CockroachDB who collaborated on the
book, and particularly Ben and Jesse for giving me the opportunity to work with
them to write this guide. As the “old man” of the team, I’ve been writing books on
database technology for more than 20 years, and the opportunity to work at the
cutting edge of modern database technology was really exciting. I’d, of course, most
especially like to thank my wonderful wife, Jenny, who makes every day a good day,
and who tolerated my distraction and absence during this project.

Jesse Seldess
I would like to thank everyone who has been part of the Cockroach Labs Documenta‐
tion team over the years. Great docs make for self-sufficient and happy users, and I’ve
been fortunate to work with dedicated, talented writers producing world-class docs
that users can trust and rely on for their day-to-day work. Many, many thanks to
Guy Harrison as well; your extensive database and development experience took this
project to new levels, and your productive writing approach kept us in constructive
discussion and on track. Finally, love and appreciation to my wife, Leonie, and kids,
Selma and Paz, for helping me find space and clarity to do my part in this book, all
my work at Cockroach Labs, and so much more.

Ben Darnell
I would like to thank Spencer Kimball and Peter Mattis for being colleagues,
cofounders, and true collaborators in creating CockroachDB. It’s been quite a journey

Preface | xxv

so far, and putting this guide together was a constant reminder of just how far we
have come since we first came up with the crazy idea of building our own distributed
database. Enormous thanks also to Guy Harrison, whose deep existing database
knowledge paired with his diligence in learning Cockroach just as deeply contributed
immeasurably to the scope and thoroughness of the book. I also wish to thank Brandi
Evans for making it possible for me to find time to step away to work on this project.
Most of all, I want to thank my wife, Juliet Moser, for her support and patience
throughout the evenings and weekends it took to produce this book, as well as the
many other reasons I am grateful for her.

Rob Reid
Whenever my Roacher colleagues head off for Thanksgiving, I always joke that
I’ll hold the fort (on account of my being British and not having anything to be
thankful for). In reality of course, I’m bursting with appreciation. From the moment
I discovered CockroachDB back in 2016, I knew it was special. Then, as a customer
of Cockroach Labs in 2018, I realized that the company itself was also special. In
early 2023, I joined Cockroach Labs as Technical Evangelist (it was only a matter of
time) and this book’s second edition is just one of the many ways I can now express
my appreciation of this incredible technology. I’d like to thank all of my friends at
Cockroach Labs (especially Greg Turnquist, Chris Ireland, Alicia Lu, David Bressler,
Ray Austin, and Ryan Kelly for their reviews and support with this project) and the
wonderful folks at O’Reilly (especially Angela Rufino for making this project so much
fun). Last but certainly not least, I want to thank my wife, Emily, and my kids, Ruby
and Rex, for putting up with my incessant enthusiasm for CockroachDB.

xxvi | Preface

PART I

Introduction to CockroachDB

CHAPTER 1

Introduction to CockroachDB

CockroachDB is a distributed, transactional, relational, cloud native SQL database
system. That’s quite a mouthful! But in short, CockroachDB leverages both the
strengths of the previous generation of relational database systems—strong consis‐
tency, the power of SQL, and the relational data model—and the strengths of modern
distributed cloud principles. The result is a database system that is broadly compati‐
ble with other SQL-based transactional databases but delivers much greater scalability
and availability.

In this chapter, we’ll review the history of database management systems (DBMSs)
and discover how CockroachDB exploits technology advances of the last few decades
to deliver on its ambitious goals.

A Brief History of Databases
Data storage and data processing are the “killer apps” of human civilization. Verbal
language gave us an enormous advantage in cooperating as a community. Still, it was
only when we developed data storage—e.g., written language—that each generation
could build on the lessons of preceding generations.

The earliest written records—dating back almost 10,000 years—are agricultural
accounting records. These cuneiform records, recorded on clay tablets (Figure 1-1),
serve the same purpose as the databases that support modern accounting systems.

Information storage technologies over thousands of years progressed slowly. The use
of cheap, portable, and reasonably durable paper media organized in libraries and
cabinets represented best practices for almost a millennia.

3

Figure 1-1. Cuneiform tablet circa 3000 BC (Source: Wikipedia (https://cockroa.ch/
3AFZ9eY))

The emergence of digital data processing has truly resulted in an information revolu‐
tion. Within a single human life span, digital information systems have resulted in
exponential growth in the volume and rate of information storage. Today, the vast
bulk of human information is stored in digital formats, much of it within database
systems.

Pre-Relational Databases
The first digital computers had negligible storage capacity and were used primarily
for computation—for instance, generating ballistic tables, decrypting codes, and per‐
forming scientific calculations. However, as magnetic tape and disks became main‐
stream in the 1950s, it became increasingly possible to use computers to store and
process volumes of information that would be unwieldy by other means.

Early applications used simple flat files for data storage. But it soon became obvious
that the complexities of reliably and efficiently dealing with large amounts of data
required specialized and dedicated software platforms—and these became the first
data systems.

Early database systems ran within monolithic mainframe computers, which also were
responsible for the application code. The applications were tightly coupled with the
database systems and processed data directly using procedural language directives. By
the 1970s, two models of database systems were vying for dominance: the network
and hierarchical models. These models were represented by the major databases of

4 | Chapter 1: Introduction to CockroachDB

https://cockroa.ch/3AFZ9eY

the day, IMS (Information Management System) and IDMS (Integrated Database
Management System).

These systems were great advances on their predecessors but had significant draw‐
backs. Queries needed to be anticipated in advance of implementation, and only
record-at-a-time processing was supported. Even the simplest report required pro‐
gramming resources to implement, and all IT departments suffered from a huge
backlog of reporting requests.

The Relational Model
Probably no one has had more influence over database technology than Edgar Codd
(whatever Larry Ellison might think). Codd was a “programming mathematician”—
what we might today call a data scientist—who had worked at IBM on and off since
1949. In 1970, Codd wrote his seminal paper, “A Relational Model of Data for Large
Shared Data Banks” (https://cockroa.ch/3LICx1M). This paper outlined what Codd
saw as fundamental issues in the design of existing database systems:

• Existing database systems merged physical and logical representations of data•
in a way that often complicated requests for data and created difficulties in
satisfying requests that were not anticipated during database design.

• There was no formal standard for data representation—as a mathematician,•
Codd was familiar with theoretical models for representing data—and he
believed these principles should be applied to database systems.

• Existing database systems were too hard to use. Only programmers were able to•
retrieve data from these systems, and the process of retrieving data was needlessly
complex. Codd felt that there needed to be an easy-access method for data
retrieval.

Codd’s relational model described a means of logically representing data that was
independent of the underlying storage mechanism. It required a query language that
could be used to answer any question that could be satisfied by the data.

The relational model defines the fundamental building blocks of a relational database:

• Tuples are a set of attribute values. Attributes are named scalar (single-•
dimensional) values. A tuple can be thought of as an individual “record” or “row.”

• A relation is a collection of distinct tuples of the same form. A relation represents•
a two-dimensional data set with a fixed number of attributes and an arbitrary
number of tuples—a table in a database is an example of a relation.

• Constraints enforce consistency and define relationships between tuples.•

A Brief History of Databases | 5

https://cockroa.ch/3LICx1M
https://cockroa.ch/3LICx1M

• Various operations are defined, such as joins, projections, and unions. Operations•
on relations always return relations. For instance, when you join two relations,
the result is itself a relation.

• A key consists of one or more attributes that can be used to identify a tuple.•
There can be more than one key, and a key can consist of multiple attributes.

The relational model furthermore defined a series of “normal forms” that represent
reducing levels of redundancy in the model. A relation is in third normal form if all
the data in each tuple is dependent on the entire primary key of that tuple and on no
other attributes. We generally remember this by the adage, “The key, the whole key,
and nothing but the key (so help me, Codd).”

Third normal form generally represents the starting point for the construction of an
efficient and performant data model. We will come back to third normal form in
Chapter 5. Figure 1-2 illustrates data in third normal form.

Figure 1-2. Data represented in a relational “third normal form” structure

6 | Chapter 1: Introduction to CockroachDB

1 From “Rule 5” in Codd’s 12 rules, which were published in the early 1980s.

Implementing the Relational Model
The relational model served as the foundation for the familiar structures present in all
relational databases today. Tuples are represented as rows and relations as tables.

A table is a relation that has been given physical storage. The underlying storage may
take different forms. In addition to the physical representation of the data, indexing
and clustering schemes were introduced to facilitate efficient data processing and
implement constraints.

Indexes and clustered storage were not a part of the relational model, but they were
incorporated in relational databases to transparently enhance query performance
without changing the types of queries that could be performed. Thus, the logical
representation of the data as presented to the application was independent of the
underlying physical model.

Indeed, in some relational implementations, a table might be implemented by multi‐
ple indexed structures, allowing different access paths to the data.

Transactions
A transaction is a logical unit of work that must succeed or fail as a unit. Transactions
predated the relational model, but in pre-relational systems, transactions were often
the responsibility of the application layer. In Codd’s relational model, the database
took formal responsibility for transactional processing.1 In Codd’s formulation, a
relational system would provide explicit support for commencing a transaction and
either committing or aborting that transaction.

The use of transactions to maintain consistency in application data was also used
internally to maintain consistency between the various physical structures that repre‐
sented tables. For instance, when a table is represented in multiple indexes, all of
those indexes must be kept synchronized in a transactional manner.

Codd’s relational model did not define all the aspects of transactional behavior that
became common to most relational database systems. In 1981, Jim Gray articulated
the core principles of transaction processing that we still use today. These prin‐
ciples later became known as ACID—atomic, consistent, isolated, and durable—
transactions.

As Gray put it, “A transaction is a transformation of state which has the properties
of atomicity (all or nothing), durability (effects survive failures) and consistency
(a correct transformation).” The principle of isolation—added in a later revision—

A Brief History of Databases | 7

required that one transaction should not be able to see the effects of other in-progress
transactions.

Perfect isolation between transactions—serializable isolation—creates some restric‐
tions on concurrent data processing. Many databases adopted lower levels of isolation
or allowed applications to choose from various isolation levels. These implications
will be discussed further in Chapter 2.

The SQL Language
Codd specified that a relational system should support a “database sublanguage” to
navigate and modify relational data. He proposed the Alpha language in 1971, which
influenced the QUEL language designed by the creators of Ingres—an early relational
database system developed at the University of California, which influenced the open
source PostgreSQL database.

Meanwhile, researchers at IBM were developing System R, a prototype DBMS based
on Codd’s relational model. They developed the SEQUEL language as the data sub‐
language for the project. SEQUEL eventually was renamed SQL and was adopted in
commercial IBM databases, including IBM DB2.

Oracle chose SQL as the query language for its pioneering Oracle relational database
management system (RDBMS), and by the end of the 1970s, SQL had won out over
QUEL as the relational query language and became an ANSI (American National
Standards Institute) standard language in 1986.

SQL needs little introduction. Today, it’s one of the most widely used computer
languages in the world. We will devote Chapter 4 to the CockroachDB SQL imple‐
mentation. However, it’s worth noting that the relative ease of use that SQL provided
expanded the audience of database users dramatically. No longer did you need to be
a highly experienced database programmer to retrieve data from a database—SQL
could be taught to casual users of databases, such as analysts and statisticians. It’s fair
to say that SQL brought databases within reach of business users.

The RDBMS Hegemony
The combination of the relational model, SQL language, and ACID transactions
became the dominant model for new database systems from the early 1980s through
the early 2000s. These systems became known generically as RDBMS.

The RDBMS came into prevalence around the same time as a seismic paradigm shift
in application architectures. The world of mainframe applications was giving way
to the client/server model. In the client/server model, application code ran on micro‐
computers (PCs) while the database ran on a minicomputer, increasingly running
the Unix OS. During the migration to client/server, mainframe-based pre-relational
databases were largely abandoned in favor of the new breed of RDBMSs.

8 | Chapter 1: Introduction to CockroachDB

By the end of the 20th century, the RDBMS reigned supreme. The leading commer‐
cial databases of the day—Oracle, Sybase, SQL Server, Informix, and DB2—competed
on performance, functionality, or price, but all were virtually identical in their adop‐
tion of the relational model, SQL, and ACID transactions. As open source software
grew in popularity, open source RDBMSs such as MySQL and PostgreSQL gained
significant and growing traction.

Enter the Internet
Around the turn of the 21st century, an even more important shift in application
architectures occurred. That shift was, of course, the internet. Initially, internet appli‐
cations ran on a software stack not dissimilar to a client/server application. A single
large server hosted the application’s database, while application code ran on a “middle
tier” server and end users interacted with the application through web browsers.

In the early days of the internet, this architecture sufficed—though often just barely.
The monolithic database servers were often a performance bottleneck, and although
standby databases were routinely deployed, a database failure was one of the most
common causes of application failure.

As the web grew, the limitations of the centralized RDBMS became untenable. The
emerging “web 2.0” social network and ecommerce sites had two characteristics that
were increasingly difficult to support:

• These systems had a global or near-global scale. Users in multiple continents•
needed simultaneous access to the application.

• Any level of downtime was undesirable. The old model of “weekend upgrades”•
was no longer acceptable. There was no maintenance window that did not
involve significant business disruption.

All parties agreed that the monolithic single database system would have to give
way if the demands of the new breed of internet applications were to be met. It
became recognized that a very significant and potentially immovable obstacle stood
in the way: CAP theorem. CAP—or Brewer’s (https://cockroa.ch/3KbklgD)—theorem
states that you can have at most two of three desirable characteristics in a distributed
system (illustrated in Figure 1-3):

Consistency
Every user sees the same view of the database state.

Availability
The database remains available unless all elements of the distributed system fail.

A Brief History of Databases | 9

https://cockroa.ch/3KbklgD

Partition tolerance
The system runs in an environment in which a network partition might
divide the distributed system in two, or if two nodes in the network cannot
communicate, a partition-tolerant system will continue to operate despite an
arbitrary number of messages being dropped (or delayed) by the network
between nodes.

Figure 1-3. CAP theorem states that a system cannot support all three properties of
consistency, availability, and partition tolerance

For instance, consider the case of a global ecommerce system with users in North
America and Europe. If the network between the two continents fails (a network
partition), then you must choose one of the following outcomes:

• Users in Europe and North America may see different versions of the database:•
sacrificing consistency.

• One of the two regions needs to shut down (or go read-only): sacrificing•
availability.

Clustered RDBMSs at that time would generally sacrifice availability. For instance,
in Oracle’s Real Application Clusters (RAC) clustered database, a network partition
between nodes would cause all nodes in one of the partitions to shut down.

Internet pioneers such as Amazon, however, believed that availability was more
important than strict consistency. Amazon developed a database system—Dynamo—
that implemented “eventual consistency.” In the event of a partition, all zones would

10 | Chapter 1: Introduction to CockroachDB

continue to have access to the system, but when the partition was resolved, inconsis‐
tencies would be reconciled—possibly losing data in the process.

The NoSQL Movement
Between 2008 and 2010, dozens of new database systems emerged, all of which aban‐
doned the three pillars of the RDBMS: the relational data model, SQL language, and
ACID transactions. Some of these new systems—Cassandra, Riak, Project Voldemort,
and HBase, for example—were directly influenced by nonrelational technologies
developed at Amazon and Google.

Many of these systems were essentially “schema-free”—supporting or even requir‐
ing no specific structure for the data they stored. In particular, in key-value (KV)
databases, an arbitrary key provides programmatic access to an arbitrary structured
“value.” The database knows nothing about what is in this value. From the databa‐
se’s view, the value is just a set of unstructured bits. Other nonrelational systems
represented data in semi-tabular formats or as JSON (JavaScript Object Notation)
documents. However, none of these new databases implemented the principles of the
relational model.

These systems were initially referred to as distributed nonrelational database manage‐
ment systems (DNRDBMSs), but—because they did not include the SQL language—
rapidly became known by the far catchier term “NoSQL” databases.

NoSQL was always a questionable term. It defined what the class of systems dis‐
carded, rather than their unique distinguishing features. Nevertheless, “NoSQL”
stuck, and in the following decade, NoSQL databases such as Cassandra, DynamoDB,
and MongoDB became established as a distinct and important segment of the data‐
base landscape.

The Emergence of Distributed SQL
The challenges of implementing distributed transactions at a web scale, more than
anything else, led to the schism in modern DBMSs. With the rise of global applica‐
tions with extremely high uptime requirements, it became unthinkable to sacrifice
availability for perfect consistency. Almost in unison, the leading web 2.0 companies
such as Amazon, Google, and Facebook introduced new database services that were
only “eventually” or “weakly” consistent but globally and highly available, and the
open source community responded with databases based on these principles.

However, NoSQL databases had their own severe limitations. The SQL language was
widely understood and was the basis for almost all business intelligence tools. NoSQL
databases found that they had to offer some SQL compatibility, so many added some
SQL-like dialect—leading to the redefinition of NoSQL as “not only SQL.” In many
cases, these SQL implementations were query-only and intended only to support

A Brief History of Databases | 11

business intelligence features. In other cases, a SQL-like language supported transac‐
tional processing but provided only the most limited subset of SQL functionality.

The problems caused by weakened consistency were harder to ignore. Consistency
and correctness in data are often nonnegotiable for mission-critical applications.
While in some circumstances—social media, for instance—it might be acceptable
for different users to see slightly different views of the same topic, in other contexts—
such as logistics—any inconsistency is unacceptable. Advanced nonrelational data‐
bases adopted tunable consistency and sophisticated conflict resolution algorithms to
mitigate data inconsistency. However, any database that abandons strict consistency
must accept scenarios in which data can be lost or corrupted during the reconcilia‐
tion of network partitions or from ambiguously timed competing transactions.

Google pioneered many of the technologies behind important open source NoSQL
systems. For instance, the Google File System and MapReduce technologies led
directly to Apache Hadoop, and Google Bigtable led to Apache HBase. As such,
Google was well aware of the limitations of these new data stores.

The Spanner project was initiated as an attempt to build a distributed database, simi‐
lar to Google’s existing Bigtable system, that could support both strong consistency
and high availability.

Spanner benefited from Google’s highly redundant network, which reduced the prob‐
ability of network-based availability issues, but the really novel feature of Spanner
was its TrueTime system. TrueTime explicitly models the uncertainty of time meas‐
urement in a distributed system so that it can be incorporated into the transaction
protocol. Distributed databases go to a lot of effort to return consistent information
from replicas maintained across the system. Locks are the primary mechanism to
prevent inconsistent information from being created in the database, while snapshots
are the primary mechanism for returning consistent information. Queries don’t
see changes to data that occur while they are executing because they read from a
consistent “snapshot” of data. Maintaining snapshots in distributed databases can be
tricky: usually, there’s a large amount of inter-node communication required to create
agreement on the ordering of transactions and queries. Clock information provided
by TrueTime enables the use of snapshots with minimal communication between
nodes.

Google Spanner further optimizes the snapshot mechanism by using GPS receivers
and atomic clocks installed in each data center. GPS provides an externally validated
timestamp while the atomic clock provides high-resolution time between GPS “fixes.”
The result is that every Spanner server across the world has almost the same clock
time. This allows Spanner to order transactions and queries precisely without requir‐
ing excessive inter-node communication or delays due to excessive clock uncertainty.

12 | Chapter 1: Introduction to CockroachDB

Spanner is highly dependent on Google’s redundant network and
specialized server hardware. Spanner can’t operate independently
of the Google network.

The initial version of Spanner pushed the boundaries of the CAP theorem as far as
technology allowed. It represented a distributed database system in which consistency
was guaranteed, availability maximized, and network partitions avoided as much as
possible. Over time, Google added relational features to the data model of Spanner
as well as SQL language support. By 2017, Spanner had evolved to a distributed
database that supported all three pillars of the RDBMS: the SQL language, relational
data model, and ACID transactions.

The Advent of CockroachDB
With Spanner, Google persuasively demonstrated the utility of a highly consistent
distributed database. However, Spanner was tightly coupled to the Google Cloud
Platform (GCP) and—at least initially—not publicly available.

There was an obvious need for the technologies pioneered by Spanner to be made
more widely available. In 2015, a trio of Google alumni—Spencer Kimball, Peter
Mattis, and Ben Darnell—founded Cockroach Labs with the intention of creating an
open source, geo-scalable, ACID-compliant database.

Spencer, Peter, and Ben chose the name “CockroachDB” in honor of the humble
cockroach, which, it is told, is so resilient that it would survive even a nuclear war
(Figure 1-4).

Figure 1-4. The original CockroachDB logo

The Advent of CockroachDB | 13

CockroachDB Design Goals
CockroachDB was designed to support the following attributes:

Scalability
The CockroachDB distributed architecture allows a cluster to scale seamlessly as
workload increases or decreases. Nodes can be added to a cluster without any
manual rebalancing, and performance will scale predictably as the number of
nodes increases.

High availability
A CockroachDB cluster has no single point of failure. CockroachDB can con‐
tinue operating if a node, zone, or region fails without compromising availability.

Consistency
CockroachDB provides the highest practical level of transactional isolation and
consistency. Transactions operate independently of each other and, once com‐
mitted, transactions are guaranteed to be durable and visible to all sessions.

Performance
The CockroachDB architecture is designed to support low-latency and high-
throughput transactional workloads. Every effort has been made to adopt
database best practices with regard to indexing, caching, and other database
optimization strategies.

Geo-partitioning
CockroachDB allows data to be physically located in specific localities to
enhance performance for “localized” applications and to respect data sovereignty
requirements.

SQL compatibility
CockroachDB implements ANSI-standard SQL and is wire-protocol compatible
with PostgreSQL. This means that the majority of database drivers and frame‐
works that work with PostgreSQL will also work with CockroachDB. Many Post‐
greSQL applications can be ported to CockroachDB without requiring significant
coding changes.

Portability
CockroachDB is offered as a fully managed database service, which in many
cases is the easiest and most cost-effective deployment mode. But it’s also capable
of running on pretty much any platform you can imagine, from a developer’s
laptop to a massive cloud deployment. The CockroachDB architecture is well
aligned with containerized deployment options, and in particular, with Kuber‐
netes. CockroachDB provides a Kubernetes operator that eliminates much of the
complexity involved in a Kubernetes deployment.

14 | Chapter 1: Introduction to CockroachDB

You may be thinking, “This thing can do everything!” However, it’s worth pointing
out that CockroachDB was not intended to be all things to all people. In particular:

CockroachDB prioritizes consistency over availability.
We saw earlier how the CAP theorem states that you have to choose either con‐
sistency or availability when faced with a network partition. Unlike “eventually”
consistent databases such as DynamoDB or Cassandra, CockroachDB guarantees
consistency at all costs. This means that there are circumstances in which a
CockroachDB node will refuse to service requests if it is cut off from its peers. A
Cassandra node in similar circumstances might accept a request even if there is
a chance that the data in the request will later have to be discarded.

The CockroachDB architecture prioritizes transactional workloads.
CockroachDB includes the SQL constructs for issuing aggregations and the SQL
2003 analytic “windowing” functions, and CockroachDB is certainly capable of
integrating with popular business intelligence tools such as Tableau. There’s no
specific reason why CockroachDB could not be used for analytic applications.
However, the unique features of CockroachDB are targeted more at transactional
workloads. For analytic-only workloads that do not require transactions, other
database platforms might provide better performance.

It’s important to remember that while CockroachDB was inspired by Spanner, it is
in no way a “Spanner clone.” The CockroachDB team has leveraged many of the
Spanner team’s concepts but has diverged from Spanner in several important ways.

First, Spanner was designed to run on very specific hardware. Spanner nodes have
access to an atomic clock and GPS device, allowing incredibly accurate timestamps.
CockroachDB is designed to run well on commodity hardware and within container‐
ized environments (such as Kubernetes) and therefore cannot rely on atomic clock
synchronization. As we will see in Chapter 2, CockroachDB does rely on decent
clock synchronization between nodes but is far more tolerant of clock skew than
Spanner; as a result, CockroachDB can run anywhere, including any cloud provider
or on-premises data center (and one CockroachDB cluster can even span multiple
cloud environments).

Second, while the distributed storage engine of CockroachDB is inspired by Spanner,
the SQL engine and APIs are designed to be PostgreSQL compatible. PostgreSQL
is one of the most implemented RDBMSs today and is supported by an extensive
ecosystem of drivers and frameworks. The “wire protocol” of CockroachDB is com‐
pletely compatible with PostgreSQL, which means that any driver that works with
PostgreSQL will work with CockroachDB. At the SQL language layer, there will
always be differences between PostgreSQL and CockroachDB because of differences
in the underlying storage and transaction models. However, most commonly used
SQL syntax is shared between the two databases.

The Advent of CockroachDB | 15

Third, CockroachDB has evolved to satisfy the needs of its community and has intro‐
duced many features never envisaged by the Spanner project. Today, CockroachDB
is a thriving database platform whose connection to Spanner is only of historical
interest.

CockroachDB Releases
The first production release of CockroachDB appeared in May 2017. This release
introduced the core capabilities of the distributed transactional SQL databases, albeit
with some limitations of performance and scale. Version 2.0—released in 2018—
included new partitioning features for geographically distributed deployments, sup‐
port for JSON data, and massive improvements in performance.

In 2019, CockroachDB courageously leaped from version 2 to version 19! This was
not because of 17 failed versions between 2 and 19 but instead reflected a change
in numbering strategy to associate each release with its release year rather than
designating releases as “major” or “minor.”

Some highlights of past releases include:

• Version 19.1 (April 2019) introduced security features such as encryption at rest•
and LDAP (Lightweight Directory Access Protocol) integration, the change data
capture facility described in Chapter 7, and multiregion optimizations.

• Version 19.2 (November 2019) introduced the Parallel Commits transaction•
protocol and other performance improvements.

• Version 20.1 (May 2020) introduced many SQL features, including ALTER•
PRIMARY KEY, SELECT FOR UPDATE, nested transactions, and temporary tables.

• Version 20.2 (November 2020) added support for spatial data types, new trans‐•
action detail pages in the DB console, and made the distributed BACKUP and
RESTORE functionality available for free.

• Version 21.1 (May 2021) simplified the use of multiregion functionality and•
expanded logging configuration options.

• Version 21.2 (November 2021) introduced bounded staleness reads and numer‐•
ous stability and performance improvements, including an admission control
system to prevent overloading the cluster.

• Version 22.1 (May 2022) added support for super regions, row-level time-to-live•
(TTL), and index recommendations.

• Version 22.2 (December 2022) introduced user-defined functions, the MOLT•
(Migrate Off Legacy Technology) Schema Conversion Tool, trigram indexes, and
the insights page.

16 | Chapter 1: Introduction to CockroachDB

2 Cockroach Labs maintains a growing list of CockroachDB case studies (https://cockroa.ch/3u6vHwZ).

• Version 23.1 (May 2023) added support for full-text search, user-defined com‐•
posite types, redaction of PII (Personally Identifiable Information) during
EXPLAIN queries, and a new shell editor with tab completion.

• Version 23.2 (February 2024) introduced the READ COMMITTED isolation•
level, support for PL/pgSQL, and column-level encryption—additionally, it
includes the capability to visualize network partitions in the DB Console, migrate
to CockroachDB via Oracle GoldenGate and Debezium, utilize the MOLT Live
Migration Service, and perform physical cluster replication.

• Version 24.1 (May 2024) hit a 99.999% (five nines) availability target for multire‐•
gion managed service clusters. It also introduced the capability to emit change‐
feed events to Azure Event Hub, connect managed service clusters to Google
Private Service Connect, and included MOLT Fetch.

• Version 24.2 (August 2024) introduced support for the VECTOR data type and•
performance improvements to the cost-based optimizer for prepared statements
via generic query plans.

CockroachDB in Action
CockroachDB has gained strong and growing traction in a crowded database mar‐
ket. Users who have been constrained by the scalability of traditional relational
databases such as PostgreSQL and MySQL are attracted by the greater scalability of
CockroachDB. Those who have been using distributed NoSQL solutions such as Cas‐
sandra are attracted by the greater transactional consistency and SQL compatibility
offered by CockroachDB. And those who are transforming toward modern contain‐
erized and cloud native architectures appreciate the cloud and container readiness of
the platform.

Today, CockroachDB can boast of significant adoption at scale across multiple indus‐
tries. Let’s look at a few of these case studies.2

CockroachDB at Netflix
Netflix has been using CockroachDB in production since 2020, and in that time has
deployed more than 380 large-scale CockroachDB clusters (of which, more than 160
are production clusters and more than 60 of those are multiregion clusters).

Their adoption of CockroachDB is advanced, offering internal teams access to
CockroachDB-as-a-service. This allows them to create clusters on-demand, enhance
their development speed and agility, and standardize on best practices.

CockroachDB in Action | 17

https://cockroa.ch/3u6vHwZ

CockroachDB at Devsisters
Devsisters is a South Korea–based game development company responsible for games
such as the mobile phone game Cookie Run: Kingdom. Originally, Devsisters used
Couchbase for its persistence layer but was challenged by issues relating to transac‐
tional integrity and scalability. When looking for a new database solution, Devsisters’
requirements included scalability, transactional consistency, and support for very
high throughput.

Devsisters considered Amazon Aurora and DynamoDB as well as CockroachDB, but
in the end, chose CockroachDB. Sungyoon Jeong from the DevOps team says, “It
would have been impossible to scale this game on MySQL or Aurora. We experienced
more than six times the workload size we anticipated, and CockroachDB was able to
scale with us throughout this journey.”

CockroachDB at DoorDash
DoorDash is a local commerce platform that connects consumers with their favorite
businesses across the United States, Canada, Australia, Japan, and Germany. Today,
DoorDash has created more than 350 CockroachDB clusters for its developers for
various customer-facing, backend analytics, and internal workloads.

The DoorDash team likes that CockroachDB scales horizontally, speaks SQL and
has Postgres wire compatibility, and handles heavy reads/writes without impacting
performance. CockroachDB’s resilient architecture and live schema changes are also
a huge bonus for the team. “DoorDash has been able to use CockroachDB to forklift-
migrate and scale numerous workloads without having to rewrite applications—only
small index or schema changes,” says Sean Chittenden, engineering lead for the Core
Infrastructure team at DoorDash.

CockroachDB at Bose
Bose is a world-leading consumer technology company particularly well known as a
provider of high-fidelity audio equipment.

Bose’s customer base spans the globe, and Bose aims to provide those customers with
best-in-class cloud-based support solutions.

Bose has embraced modern microservices-based software architecture. The backbone
of the Bose platform is Kubernetes, which allows applications access to low-level serv‐
ices—containerized computation—and to higher-level services such as Elasticsearch,
Kafka, and Redis. CockroachDB became the foundation of the database platform for
this containerized microservice platform.

18 | Chapter 1: Introduction to CockroachDB

Aside from the resiliency and scalability of CockroachDB, CockroachDB’s capability
to be hosted within a Kubernetes environment was decisive.

By running CockroachDB in a Kubernetes environment, Bose has empowered devel‐
opers by providing a self-service database-on-demand capability. Developers can
spin up CockroachDB clusters for development or testing simply and quickly within
a Kubernetes environment. In production, CockroachDB running with Kubernetes
provides full-stack scalability, redundancy, and high availability.

CockroachDB at Form3
Form3 is revolutionizing how payments work. Powering some of the largest financial
institutions in the world, CockroachDB provides a resilient backbone to a tier-0,
critical national payments infrastructure.

Form3 regularly tests CockroachDB to its limits with chaos engineering, allow‐
ing its built-in self-healing to recover from anything they throw at it. Running
CockroachDB across not only multiple cloud regions but also multiple cloud provid‐
ers makes Form3 one of the most robust and resilient payment providers in the
world.

CockroachDB at Hard Rock Digital
Answering to the US Federal Wire Act (1961), Hard Rock Digital runs a
CockroachDB cluster that spans cloud regions and on-prem data centers.

The Federal Wire Act requires that all data and processing for a bet remains within
the state it was placed. To reach customers where hyperscalers don’t have regions,
Hard Rock Digital runs CockroachDB on AWS Outposts—an AWS service that runs
on their own hardware. This allows Hard Rock Digital to run CockroachDB in every
state they serve, while remaining compliant with regulations.

CockroachDB at Spreedly
Spreedly is a global payments orchestration platform that gives customers access to
payment services in more than 100 countries, all from a single API. Following their
adoption of CockroachDB, they’ve drastically simplified their architecture by:

• Removing multiple legacy databases•
• Eliminating unnecessary extract, transform, and load (ETL) pipeline components•
• Solving a complex split-brain scenario and ensuring a consistent view of data to•

all consumers

CockroachDB in Action | 19

CockroachDB at Route
Route is a leading post-purchase platform, and CockroachDB is the beating heart of
their platform’s always-on data model—processing billions of orders for millions of
customers.

Given the seasonal nature of the ecommerce businesses they support, the ease of
scaling both up and down afforded by CockroachDB allows them to serve their
customers efficiently—all with zero downtime.

CockroachDB offers the biggest ROI I’ve seen in terms of paid support from any
vendor.

—Brian Call, senior principal engineer at Route

Summary
In this chapter, we’ve placed CockroachDB in a historical context and introduced the
goals and capabilities of the CockroachDB database.

The RDBMSs that emerged in the 1970s and 1980s were a triumph of software
engineering that powered software applications from client/server through to the
early internet. But the demands of globally scalable, always available internet applica‐
tions were inconsistent with the monolithic, strictly consistent RDBMS architectures
of the day. Consequently, a variety of NoSQL distributed, “eventually consistent”
systems emerged around 2010 to support the needs of a new generation of internal
applications.

While these NoSQL solutions have their advantages, they are a step backward for
many or most applications. The inability to guarantee data correctness and the loss of
the highly familiar and productive SQL language was a regression in many respects.
CockroachDB was designed as a highly consistent and highly available SQL-based
transactional database that provides a better compromise between availability and
consistency—prioritizing consistency above all but providing very high availability.

CockroachDB is a highly available, transactionally consistent SQL database compati‐
ble with existing development frameworks and with increasingly important contain‐
erized deployment models and cloud architectures. CockroachDB has been deployed
at scale across a wide range of verticals and circumstances.

In the next chapter, we’ll examine the architecture of CockroachDB and see exactly
how it achieves its ambitious design goals.

20 | Chapter 1: Introduction to CockroachDB

CHAPTER 2

CockroachDB Architecture

The architecture of a software system defines the high-level design decisions that
enable the goals of that system. As you may recall from Chapter 1, the goals of
CockroachDB are to provide a scalable, highly available, highly performant, strongly
consistent, geo-distributed, SQL-powered relational database system capable of run‐
ning across a wide variety of hardware platforms. The architecture of CockroachDB
is aligned to those objectives.

Feel Free to Skip Ahead!
The CockroachDB architecture is sophisticated: it incorporates decades of database
engineering best practice designs together with several unique innovations. However,
CockroachDB doesn’t require that you understand its internals to get things done. If
you’re in a hurry to get started with CockroachDB, you can skip forward to the next
chapter and return to this chapter later as necessary. We will, however, assume you
are broadly familiar with the key concepts in this chapter when we consider advanced
topics later in the book. Those key concepts are summarized over the next few pages
and elaborated on in the remainder of the chapter.

There are multiple ways of looking at the CockroachDB architecture. At the cluster
level, a CockroachDB deployment consists of one or more shared-nothing, leaderless
nodes that collaborate to present a single logical view of the distributed database sys‐
tem. Within each node, we can observe the CockroachDB architecture as a series of
layers that provide essential database services, including SQL processing, transaction
processing, replication, distribution, and storage.

In this chapter, we’ll endeavor to give you a comprehensive overview of the
CockroachDB architecture. The aim of the chapter is to provide you with the

21

fundamental concepts that will help you make sensible decisions regarding schema
design, performance optimization, cluster deployment, and other topics.

The CockroachDB Cluster Architecture
From a distance, a CockroachDB deployment consists of one or more database server
processes. Each server has its own dedicated storage—the familiar “shared-nothing”
database cluster pattern. The nodes in a CockroachDB cluster are symmetrical—there
are no “special” or “primary” nodes. This storage is often directly attached to the
machine on which the CockroachDB server runs, though it’s also possible for that
data to be physically located on a shared storage subsystem. Data is distributed across
the cluster based on key ranges. Each range is replicated to at least three members of
the cluster.

Database clients—applications, administrative consoles, the CockroachDB shell, and
so on—connect to a CockroachDB server within the cluster.

The communications between a database server and database client occur over the
PostgreSQL wire protocol format. This protocol describes how SQL requests and
responses are transmitted between a PostgreSQL client and a PostgreSQL server.
Because CockroachDB uses the PostgreSQL wire protocol, any PostgreSQL driver can
be used to communicate with a CockroachDB server. In a more complex deployment,
one or more load balancer processes will be responsible for ensuring that these
connections are evenly and sensibly distributed across nodes. The load balancer will
connect the client with one of the nodes within the cluster, which will become the
gateway server for the connection.

The client request might involve reading and writing data to a single node or to
multiple nodes within the cluster. For any given range of KVs, a leaseholder node will
be responsible for controlling reads and writes to that range. The leaseholder is also
usually the Raft leader, which has the responsibility to make sure that replicas of the
data are maintained correctly.

Figure 2-1 illustrates some of these concepts. A database client connects to a load
balancer (1) that serves as a proxy for the CockroachDB cluster. The load balancer
directs requests to an available CockroachDB node (2). This node becomes the gate‐
way node for this connection. The request requires data in range 4, so the gateway
node communicates with the leaseholder node for this range (3), which returns data
to the gateway, which in turn returns the required data to the database client (4).

22 | Chapter 2: CockroachDB Architecture

Figure 2-1. CockroachDB cluster architecture

This architecture distributes load evenly across the nodes of the cluster. Gateway
duties are distributed evenly across the nodes of the cluster by the load balancer;
leaseholder duties are similarly distributed by ranges across all the nodes.

If a query requires data from multiple ranges or where data must be changed (and
therefore replicated), the workflow involves more steps. We’ll examine the nuances of
CockroachDB distribution and replication later in this chapter, but for now there are
a few concepts we need to understand.

Under the hood, data in a CockroachDB table is organized in a KV storage system.
The key for the KV store is the table’s primary key. The value in the KV store is a
binary representation of the values for all the columns in that row.

The CockroachDB Cluster Architecture | 23

Indexes are also stored in the KV system. In the case of a nonunique index, the key is
the index key concatenated to the table’s primary key. In the case of a unique index,
the key is the index key, with the primary key appearing as the corresponding value
for that key.

Ranges store contiguous spans of KVs. Ranges are analogous to shards or shard
chunks in other databases. Figure 2-2 illustrates how a “dogs” table might be segmen‐
ted into ranges.

Figure 2-2. Ranges

As mentioned earlier, leases are granted to a node giving it responsibility for man‐
aging reads and writes to a range. The node holding the lease is known as the
leaseholder. The same node is generally also the Raft leader, which is responsible for
ensuring that replicas of the node are correctly maintained across multiple nodes.

The CockroachDB Software Stack
Each CockroachDB node runs a copy of the CockroachDB software, which is a single
multithreaded process. From the OS perspective, the CockroachDB process might
seem like a closed box, but internally it is organized into multiple logical layers, as
shown in Figure 2-3.

We’ll discuss each of these layers in turn as we proceed through the chapter.

24 | Chapter 2: CockroachDB Architecture

Figure 2-3. CockroachDB software layers

The CockroachDB SQL Layer
The SQL layer is the part of the CockroachDB software stack that is responsible
for handling SQL requests. Because CockroachDB is a SQL database, you would
be forgiven for thinking that the SQL layer does pretty much everything. However,
the core responsibility of the SQL layer is actually to turn SQL requests into KV
operations. Other layers handle transactions, distribution, and replication of ranges
and physical storage to disk.

The SQL layer receives requests from database clients over the PostgreSQL wire
protocol. A database client is any program that uses a database driver to communi‐
cate with the server. It includes the CockroachDB command-line SQL processor,
GUI tools such as DBeaver or Tableau, or applications written in Java, Go, Node.js,
Python, or any other language that has a compatible driver.

The CockroachDB SQL Layer | 25

The PostgreSQL wire protocol describes the format of network packets that are used
to send requests and receive results from a database client and server. The wire
protocol lays on top of a transport medium such as TCP/IP or Unix-style sockets.
The use of the PostgreSQL wire protocol allows CockroachDB to take advantage
of the large ecosystem of compatible language drivers and tools that support the
PostgreSQL database.

The SQL layer parses the SQL request, checking it for syntactical accuracy and
ensuring that the connection has privileges to perform the requested task.

CockroachDB then creates an execution plan for the SQL statement and proceeds to
optimize that plan.

SQL is a declarative language: you define the data you want, not how to get it.
Although the nonprocedural nature of SQL results in improvements in programmer
productivity, the database server must support a set of sophisticated algorithms to
determine the optimal method of executing the SQL. These algorithms are collec‐
tively referred to as the optimizer.

For almost all SQL statements, there will be more than one way for CockroachDB to
retrieve the rows required. For instance, given a SQL statement with JOIN and WHERE
clauses, there may be multiple join orders and multiple access paths (table scans,
index lookups, etc.) available to retrieve data. It’s the goal of the optimizer to deter‐
mine the best access path. CockroachDB’s SQL optimizer has some unique features
relating to its distributed architecture, but broadly speaking, the cost-based optimizer
is similar to that found in other SQL databases such as Oracle or PostgreSQL.

The optimizer uses both heuristics—rules—and cost-based algorithms to perform its
work.

The first stage of the SQL optimization process is to transform the SQL into a
normalized form suitable for further optimization. This transformation removes
any redundancies in the SQL statement and performs rule-based transformations to
improve performance. The transformation takes into account the distribution of data
for the table, adding predicates to direct parts of the queries to specific ranges or
adding predicates that allow the use of indexed retrieval paths.

The optimization of the SQL statement proceeds in two stages: expansion and rank‐
ing. The SQL statement is transformed into an initial plan. Then the optimizer
expands that plan into a set of equivalent candidate plans that involve alternative
execution paths such as join orders or indexes. The optimizer then ranks the plans
by calculating the relative cost of each operation, leveraging statistics that supply the
size and distribution of data within each table. The plan with the lowest cost is then
selected.

26 | Chapter 2: CockroachDB Architecture

CockroachDB also supports a vectorized execution engine that can speed up the
processing of batches of data. This engine translates data from a row-oriented format
(where sets of data contain data from the same row) to a column-oriented format
(where every set of data contains information from the same column).

We’ll return to the optimizer in Chapter 8 when we look in detail at SQL tuning.

From SQL to Key-Values
As we mentioned earlier, CockroachDB data is stored in a KV storage system that is
distributed across multiple nodes in ranges. We’ll look at the details of this storage
system toward the end of the chapter, but since the outputs of the SQL layer are, in
fact, KV operations, the mapping of data from tables and indexes to KV representa‐
tion is part of the SQL layer. The output of the SQL layer are KV operations.

This translation means that only the SQL layer needs to be concerned with SQL
syntax—all the subsequent layers are blissfully unaware of the SQL language.

Tables as Represented in the KV Store
Each entry in the KV store has a key based on the following structure:

/<tableID>/<indexID>/<IndexKeyValues>/<ColumnFamily>

We’ll discuss column families in the next section. By default, all columns are included
in a single default column family.

For a base table, the default indexID is “primary.”

Figure 2-4 shows a simplified version of this mapping, omitting the column family
identifier.

Figure 2-4. KV to column mappings

From SQL to Key-Values | 27

Figure 2-4 illustrates the table name and index name (“primary”) as text, but within
the KV store, these are represented as compact table and index identifiers.

Column Families
In the preceding example, all the columns for a table are aggregated in the value
section of a single KV entry. However, it’s possible to direct CockroachDB to store
groups of columns in separate KV entries using column families. Each column family
in a table will be allocated its own KV entry. Figure 2-5 depicts this concept—if a
table has two column families, then each row in the table will be represented by two
KV entries.

Figure 2-5. Column families in the KV store

Column families can have a number of advantages. If infrequently accessed large
columns are separated, then they will not be retrieved during row lookups, which can
improve the efficiency of the KV store cache. Furthermore, concurrent operations on
columns in separate column families will not interfere with each other.

28 | Chapter 2: CockroachDB Architecture

Indexes in the KV Store
Indexes are represented by a similar KV structure. For instance, the representation of
a nonunique index is shown in Figure 2-6.

Figure 2-6. Nonunique index KV store representation

The key for a nonunique index includes the table and index name, the KV, and the
primary KV. For a nonunique index, there is no “value” by default.

For a unique index, the KV value defaults to the value of the primary key. So, if name
was unique in the inventory table used in previous examples, a unique index on name
is represented as in Figure 2-7.

Figure 2-7. Unique index KV store representation

From SQL to Key-Values | 29

Inverted Indexes
CockroachDB columns can be defined as arrays or JSON documents. We’ll discuss
this in detail in Chapter 4.

Inverted indexes allow indexed searches into values included in these arrays or JSON
documents. In this case, the KVs include the JSON path and value together with the
primary key, as shown in Figure 2-8.

Figure 2-8. Inverted index KV representation

Inverted indexes are also used on spatial data.

Inverted indexes can be larger and more expensive to maintain than other indexes
because a single JSON document in a row will generate one index entry for each
unique attribute. For complex JSON documents, this might result in dozens of index
entries for each document. We’ll also discuss this further—and consider some alter‐
natives—in Chapter 8.

The STORING Clause
The STORING clause of CREATE INDEX allows us to add additional columns to the value
portion of the KV index structure. These additional columns can streamline a query
that contains a projection (e.g., a SELECT list) that includes only those columns and
the index keys. For instance, in Figure 2-9, we see a nonunique index on name and
dateOfBirth that uses the STORING clause to add the phone number to the KV value.
Queries that seek to find the phone number using name and date of birth can now be
resolved by the index alone without reference to the base table.

30 | Chapter 2: CockroachDB Architecture

Figure 2-9. STORING clause of CREATE INDEX

Table Definitions and Schema Changes
The schema definitions for tables (and their associated indexes) are stored in a special
keyspace called a table descriptor. For performance reasons, table descriptors are
replicated on every node. The table descriptor is used to parse and optimize SQL and
to correctly construct KV operations for a table.

CockroachDB supports online schema changes using ALTER TABLE, CREATE INDEX,
and other commands. The schema is changed in discrete stages that allow the new
schema to be rolled out while the previous version is still in use. Schema changes run
as background tasks.

The node initiating the schema change will acquire a write lease on the relevant table
descriptor. Nodes that are performing data manipulation language (DML) on a table
will have a lease on the relevant table descriptor. When the node holding the write
lease modifies the definition, it is broadcast to all nodes in the cluster that will—when
it becomes possible—release their lease on the old schema.

The schema change may involve changes to table data (removing or adding columns)
and/or creating new index structures. When all of the instances of the table are stored
according to the requirements of the new schema, then all nodes will switch over to
the new schema and will allow reads and writes of the table using the new schema.

From SQL to Key-Values | 31

The CockroachDB Transaction Layer
The transaction layer is responsible for maintaining the atomicity of transactions by
ensuring that all operations in a transaction are committed or aborted.

Additionally, the transaction layer maintains—by default—serializable isolation
between transactions; this means that transactions are completely isolated from the
effects of other transactions. Although multiple transactions may be in progress at the
same time, the experience of each transaction is as if the transactions were run one at
a time—the serializable isolation level.

Isolation Levels
Transaction “isolation levels” define to what extent transactions are isolated from the
effects of other transactions. ANSI SQL defines four isolation levels that are, from
weakest to strongest: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and
SERIALIZABLE. Additionally, an isolation level of SNAPSHOT is used by many databases
as an alternative “strong” isolation level.

The majority of relational databases use a default isolation level of READ COMMITTED,
allowing for improved concurrency at the expense of consistency. CockroachDB sup‐
ports both SERIALIZABLE and READ COMMITTED, with SERIALIZABLE being the default
isolation level.

When using the default SERIALIZABLE isolation level, CockroachDB transactions
must exhibit absolute independence from all other transactions. The results of a set of
concurrent transactions must be the same as if they had all been performed one after
the other.

For applications designed for READ COMMITTED isolation, CockroachDB allows opera‐
tors to lower the default isolation to READ COMMITTED for a more streamlined migra‐
tion to CockroachDB.

32 | Chapter 2: CockroachDB Architecture

The transaction layer processes KV operations generated by the SQL layer. A trans‐
action consists of multiple KV operations, some of which may be the result of
a single SQL statement. In addition to updating table entries, index entries must
also be updated. Maintaining perfect consistency under all circumstances involves
multiple sophisticated algorithms, not all of which can be covered in this chapter.
For comprehensive information, you may wish to consult the CockroachDB 2020
SIGMOD paper (https://cockroa.ch/3rKVaJX), which covers many of these principles
in more detail.

MVCC Principles
Like most transactional database systems, CockroachDB implements the multiver‐
sion concurrency control (MVCC) pattern. MVCC allows readers to obtain a consis‐
tent view of information, even while that information is being modified. Without
MVCC, consistent reads of a data item need to block (typically using a “read lock”)
simultaneous writes of that item and vice versa. With MVCC, readers can obtain a
consistent view of information even while the information is being modified by a
concurrent transaction.

Figure 2-10 illustrates the basic principles of MVCC. At time t1, session s1 reads from
row r2 and accesses version v1 of that row (1). At timestamp t2, another database
session, s2, updates the row (2), creating version v2 of that row (3). At t3, session s1
reads the row again, but—because s2 has not yet committed its change—continues to
read from version v1 (4). After s2 commits (5), session s1 issues another select and
now reads from the new v2 version of the row (6).

The CockroachDB implementation limits the ability of transactions to read from
previous versions. For instance, if a read transaction commences after a write transac‐
tion has begun, it may not be able to read the original version of the row because
it might be inconsistent with other data already read or that will be read later in
the transaction. This may result in the read transaction “blocking” until the write
transaction commits or aborts.

We’ll see later on how the storage engine implements MVCC, but for now, the
important concept is that multiple versions of any row are maintained by the system,
and transactions can determine which version of the row to read depending on their
timestamp and the timestamp of any concurrent transactions.

The CockroachDB Transaction Layer | 33

https://cockroa.ch/3rKVaJX
https://cockroa.ch/3rKVaJX

Figure 2-10. MVCC

Transaction Workflow
Distributed transactions must proceed in multiple stages. Simplistically, each node in
the distributed system must lay the groundwork for the transaction and the transac‐
tion will be finalized only if all nodes report that the transaction can be performed.

Figure 2-11 illustrates a highly simplified flow of transaction preparation. In this case,
a two-statement transaction is sent to the CockroachDB gateway node (1). The first
statement involves a change to range 2, so that request is sent to the leaseholder
for that range (2), which creates a new tentative version of the row and propagates
changes to replica nodes (3 and 4). The second statement affects range 4, so the trans‐
action coordinator sends that request to the appropriate leaseholder (5), which is also
propagated (6 and 7). When all changes have correctly propagated, the transaction
completes, and the client is notified of success (8).

34 | Chapter 2: CockroachDB Architecture

Figure 2-11. Basic transaction flow

Write Intents
During the initial stages of transaction processing, when it is not yet known whether
the transaction will succeed, the leaseholder writes tentative modifications to modi‐
fied values known as write intents. Write intents are specially constructed MVCC-
compliant versions of the records, which are marked as provisional. They serve both
as tentative transaction outcomes and as locks that prevent any concurrent attempts
to update the same record.

The CockroachDB Transaction Layer | 35

Inside the first key range to be modified by the transaction, CockroachDB writes a
special transaction record. This records the definitive status of the transaction. In the
example shown in Figure 2-11, this transaction record would be stored in range 2
because that is the first range to be modified in the transaction.

This transaction record will record the transaction state as one of the following:

PENDING

Indicates that the write intent’s transaction is still in progress.

STAGING

All transaction writes have been performed, but the transaction is not yet guar‐
anteed to commit.

COMMITTED

The transaction has been successfully completed.

ABORTED

Indicates that the transaction was aborted and its values should be discarded.

Parallel Commits
In a distributed database, the number of network round trips is often the dominant
factor in latency. In general, committing a distributed transaction requires at least
two round trips (indeed, one of the classic algorithms for this is called Two-Phase
Commit). CockroachDB uses an innovative protocol called Parallel Commits to hide
one of these round trips from the latency as perceived by the client.

The key insight behind Parallel Commits is that the gateway can return success to the
client as soon as it becomes impossible for the transaction to abort, even if it is not
yet fully committed. The remaining work can be done after returning as long as its
outcome is certain. This is done by transitioning the transaction to the STAGING state
in parallel with the transaction’s last round of writes. The keys of all of these writes are
recorded in the transaction record. A STAGING transaction must be committed if and
only if all of those writes succeed.

Usually, the gateway learns the status of these writes as soon as they are complete and
returns control to the client before beginning the final resolution of the transaction
in the background. If the gateway fails, the next node to encounter the STAGING trans‐
action record is responsible for querying the status of each write and determining
whether the transaction must be committed or aborted (but because the transaction
record and each write intent have been written durably, the outcome is guaranteed to
be the same whether the transaction is resolved by its original gateway or by another
node).

36 | Chapter 2: CockroachDB Architecture

Note that any locks held by the transaction are not released until after this resolution
process has been completed. Therefore, the duration of a transaction from the per‐
spective of another transaction waiting for its locks is still at least two round trips
(just as in Two-Phase Commit). However, from the point of view of the session
issuing the transaction, the elapsed time is significantly reduced.

Transaction Cleanup
As discussed in the previous section, a COMMIT operation “flips a switch” in the
transaction record to mark the transaction as committed, minimizing any delays that
would otherwise occur when a transaction is committed. After the transaction has
reached the COMMIT stage, then it will asynchronously resolve the write intents by
modifying them into normal MVCC records representing the new record values.

However, as with any asynchronous operation, there may be a delay in performing
this cleanup. Furthermore, since a committed write intent looks the same as a pend‐
ing write intent, transactions that encounter a write intent record when reading a key
will need to determine if the write intent is committed.

If another transaction encounters a write intent that has not yet been cleaned up by
the transaction coordinator, then it can perform the write intent cleanup by checking
the transaction record. The write intent contains a pointer to the transaction records,
which can reveal if the transaction is committed.

Overview of Transaction Flow
Figure 2-12 illustrates the flow of a successful two-statement transaction. A client
issues an UPDATE statement (1). This creates a transaction coordinator that maintains
a transaction record in PENDING state. Write intent commands are issued to the
leaseholder for the range concerned (2). The leaseholder writes the intent markers to
its copy of the data. It returns success to the transaction coordinator without waiting
for the replica’s intents to be acknowledged.

Subsequent modifications in the transaction are processed in the same manner.

The client issues a COMMIT (3). The transaction coordinator marks the transaction
status as STAGING. When all write intents are confirmed, the initiating client is advised
of success, and then the transaction status is set to COMMITTED (4).

After a successful commit, the transaction coordinator resolves the write intents
in affected ranges, which become normal MVCC records (5). At this point, the
transaction has released all its locks, and other transactions on the same records are
free to proceed.

The CockroachDB Transaction Layer | 37

Figure 2-12. Transaction sequence

Figure 2-12 is highly simplified but can still be a little hard to unpack. There are two
main takeaways from the diagram:

• Most operations respond in two stages; we can proceed to the next step after the•
first response and need to resolve everything only at the end of the commit.

• The latency for the client doesn’t include all of the cleanup operations. The•
UPDATE operations return before all the write intents are propagated, and the
COMMIT returns before all the write intents are resolved. Hopefully, this removes
a lot of the overhead of distributed database management from application
response time.

38 | Chapter 2: CockroachDB Architecture

Read/Write Conflicts
So far, we’ve looked at the processing of successful transactions. It would be great
if all transactions succeeded, but in all but the most trivial scenarios, concurrent
transactions create conflicts that must be resolved.

The most obvious case is when two transactions attempt to update the same record.
There cannot be two write intents active against the same key, so one of the transac‐
tions will wait for the other to complete, or one of the transactions will be aborted.
If the transactions are of the same priority, then the second transaction—the one that
has not yet created a write intent—will wait. However, if the second transaction has a
higher priority, then the original transaction will be aborted and will have to retry.

Transaction priorities can be adjusted with the SET TRANSACTION statement—see
Chapter 6.

Transaction isolation levels can be set on a per-transaction basis with the BEGIN
TRANSACTION ISOLATION LEVEL READ COMMITTED statement or by setting defaults at
the database or role level as follows:

-- Database level.
ALTER DATABASE your_db SET default_transaction_isolation = 'read committed';

-- Role level.
ALTER ROLE your_role SET default_transaction_isolation = 'read committed';

The TxnWaitQueue object tracks the transactions that are waiting and the transactions
that they are waiting on. This structure is maintained within the Raft leader of the
range associated with the transaction. When a transaction commits or aborts, the
TxnWaitQueue is updated, and any waiting transactions are notified.

A deadlock can occur if two transactions are both waiting on write intents created by
the other transaction. In this case, one of the transactions will be randomly aborted.
We’ll discuss this in more detail in Chapter 6.

Transaction conflicts can also occur between readers and writers. If a reader encoun‐
ters an uncommitted write intent that has a lower (i.e., earlier) timestamp than the
consistent read timestamp for the read, then a consistent read cannot be completed.
This can happen if a modification occurs between the time a read transaction starts
and the time it attempts to read the key concerned. In this case, the read will need to
wait until the write either commits or aborts.

The CockroachDB Transaction Layer | 39

These “blocked reads” can be avoided in the following circumstances:

• If the read has a high priority, CockroachDB may “push” the lower-priority•
write’s timestamp to a higher value, allowing the read to complete. The “pushed”
transaction may need to restart if the push invalidates any previous work in the
transaction.

• Stale reads that use AS OF SYSTEM TIME will not block (as long as the transaction•
does not exceed the specified staleness). We’ll discuss AS OF SYSTEM TIME a bit
later in this chapter.

• In multiregion configurations—which we’ll describe in detail in Chapter 11—•
GLOBAL tables use a modified transaction protocol in which reads are not blocked
by writes.

Many transaction conflicts are managed automatically, and while these have perfor‐
mance implications, they don’t impact functionality or code design. However, there
are multiple scenarios in which an application may need to handle an aborted trans‐
action. We’ll look at these scenarios and discuss best practices for transaction retries
in Chapter 6.

Clock Synchronization and Clock Skew
You may have noticed in previous sections that CockroachDB must compare time‐
stamps of operations frequently to determine if a transaction is in conflict. Simplis‐
tically, we might imagine that every node in the system can agree on the time of
each operation and make these comparisons easily. In reality, every system is likely
to have a slightly different system clock time, and this discrepancy is likely to be
greater the more geographically distributed a system is. The difference in clock times
is referred to as clock skew. Consequently, in widely distributed systems with very
high transaction rates, getting nodes to agree on the exact sequence of transactions
is problematic. As you might remember, Spanner attacked this problem by using
specialized hardware—atomic clocks and GPS—to reduce the inconsistency between
system clocks. As a result, Spanner can keep the clock skew within 7 ms and simply
adds a 7 ms sleep to every transaction to ensure that no transactions complete out of
order.

Since CockroachDB must run reliably on generic hardware, it synchronizes time
using the venerable and ubiquitous internet Network Time Protocol (NTP). NTP
produces accurate timestamps but nowhere near as accurate as Spanner’s GPS and
atomic clocks.

By default, CockroachDB will tolerate a clock skew as high as 500 ms. Adding
half a second to every transaction in the Spanner manner would be untenable, so
CockroachDB takes a different approach for dealing with transactions that appear

40 | Chapter 2: CockroachDB Architecture

within the 500 ms uncertainty interval. Put simply, while Spanner always waits after
writes, CockroachDB sometimes retries reads.

If a reader can’t say for certain whether a value being read was committed before the
read transaction started, then it pushes its own provisional timestamp just above the
timestamp of the uncertain value. Transactions reading constantly updated data from
many nodes may be forced to restart multiple times, though never for longer than the
uncertainty interval, nor more than once per node.

The CockroachDB time synchronization strategy allows CockroachDB to deliver true
serializable consistency. However, there are still some anomalies that can occur. Two
transactions that operate on unrelated KVs that still have some real-world sequenc‐
ing dependency might appear to be committed in reverse order—the causal reverse
anomaly. This is not a violation of serializable isolation because the transactions
are not actually logically dependent. Nevertheless, it is possible in CockroachDB for
transactions to have timestamps that do not reflect their real-world ordering.

The CockroachDB Distribution Layer
Logically, a table is represented in CockroachDB as a monolithic KV structure, in
which the key is a concatenation of the primary keys of the table, and the value is
a concatenation of all of the remaining columns in the table. We introduced this
structure back in Figure 2-2.

The distribution layer breaks this monolithic structure into contiguous chunks of
approximately 512 MB. The 512 MB chunk is sized to keep the number of ranges
per node manageable. The distribution layer keeps data distributed evenly across the
cluster while simultaneously presenting a unified and consolidated view of that data
to the applications that need it.

Meta Ranges
The distribution of ranges is stored in global keyspaces meta1 and meta2. meta1 can
be thought of as a “range of ranges” lookup, which then allows a node to find the
location of the node holding the meta2 record, which in turn points to the nodes
holding copies of every range within the “range of ranges.” Figure 2-13 illustrates this
two-level lookup structure.

Node 1 needs to get data for the key “HarrisonGuy.” It looks in its copy of meta1,
which tells it that node2 contains the meta2 information for the range G–M. It
accesses the meta2 data concerned from node 2, which indicates that node4 is the
leaseholder for the range G–I, and therefore the leaseholder for the range concerned.

The CockroachDB Distribution Layer | 41

Figure 2-13. Meta ranges

Gossip
CockroachDB uses the gossip protocol to share ephemeral information between
nodes. Gossip is a widely used protocol in distributed systems in which nodes propa‐
gate information virally through the network.

Gossip maintains an eventually consistent KV map on all the CockroachDB nodes. It
is used primarily for bootstrapping: it contains a “meta0” record that tells the cluster
where the meta1 range can be found, as well as mappings from the node IDs stored in
meta records to network addresses. Gossip is also used for certain operations that do
not require strong consistency, such as maintaining information about the available
storage space on each node for rebalancing purposes.

Leaseholders
The leaseholder is the CockroachDB node responsible for serving reads and coordi‐
nating writes for a specific range of keys. We discussed some of the responsibilities
of the leaseholder in “The CockroachDB Transaction Layer” on page 32. When a
transaction coordinator or gateway node wants to initiate a read or write against a
range, it finds that range’s leaseholder (using the meta ranges structure discussed in
the previous section) and forwards the request to the leaseholder.

Leaseholders are assigned using the Raft protocol, which we will discuss in “The
CockroachDB Replication Layer” on page 45.

42 | Chapter 2: CockroachDB Architecture

Range Splits
CockroachDB will attempt to keep a range at less than 512 MB. When a range
exceeds that size, the range will be split into two smaller contiguous ranges.

Ranges can also be split if they exceed a load threshold. If the parameter
kv.range_split.by_load.enabled is true and the number of queries per second
to the range exceeds the value of kv.range_split.load_qps_threshold, then a range
may be split even if it is below the normal size threshold for range splitting. Other
factors will determine if a split actually occurs, including whether the resulting split
would actually split the load between the two new ranges and the impact on queries
that might now have to span the new ranges.

When splitting based on load, the two new ranges might not be of equal sizes. By
default, the range will be split at the point at which the load on the two new ranges
will be roughly equal. Figure 2-14 illustrates a basic range split when an insert causes
a range to exceed the 512 MB threshold. Two ranges are created as a consequence.

Figure 2-14. Range splits

Ranges can also be split manually using the SPLIT AT clause of the ALTER TABLE and
ALTER INDEX statements.

The CockroachDB Distribution Layer | 43

Ranges can be merged as well. If DELETE statements remove data from ranges and
the range falls below a size threshold, CockroachDB may merge the range with a
neighboring range.

Multiregion Distribution
Geo-partitioning allows data to be located within a specific geographic region. This
might be desirable from a performance point of view—reducing latencies for queries
from a region about that region—or from a data sovereignty perspective—keeping
data within a specific geographic region for legal or regulatory reasons. CockroachDB
supports a multiregion configuration that controls how data should be distributed
across regions. The following core concepts are relevant:

• Cluster regions are geographic regions that a user specifies at node start time.•
• Regions may have multiple zones.•
• Super Regions allow for data domiciling and contain one or more regions.•
• Databases within the cluster are assigned to one or more regions: one of these•

regions is the primary region.
• Tables within a database may have specific locality rules (global, regional by table,•

regional by row), which determine how its data will be distributed across zones.
• Survival goals dictate how many simultaneous failures a database can survive.•

With the zone-level survival goal, the database will remain fully available for reads
and writes, even if a zone goes down. However, the database may not remain fully
available if multiple zones fail in the same region. Surviving zone failures is the
default setting for multiregion databases.

The region-level survival goal has the property that the database will remain fully
available for reads and writes, even if an entire region goes down. This, of course,
means that copies of data will need to be maintained in other regions, magnifying
write time.

By default, all tables in a multiregion database are regional tables—that is,
CockroachDB optimizes access to the table’s data from a single region (by default,
the database’s primary region). Regional by row tables provide low-latency reads and
writes for one or more rows of a table from a single region. Different rows in the table
can be optimized for access from different regions.

Global tables are optimized for low-latency reads from all regions.

44 | Chapter 2: CockroachDB Architecture

The CockroachDB Replication Layer
High availability requires that data not be lost or made unavailable should a node fail.
This, of course, requires that multiple copies of data be maintained.

The two most commonly used high-availability designs are:

Active-passive
A single node is a “primary” or “active” node whose changes are propagated to
passive “secondary” or “passive” nodes.

Active-active
All nodes run identical services. Typically, active-active database systems are
of the “eventually consistent” variety. Since there is no “primary,” conflicting
updates can be processed by different nodes. These will need to be resolved,
possibly by discarding one of the conflicting updates.

CockroachDB implements a distributed consensus mechanism that is called multi-
active. Like active-active, all replicas can handle traffic, but for an update to be
accepted, it must be confirmed by a majority of voting replicas.

Not all replicas necessarily get a vote. Nonvoting replicas are useful in globally
distributed systems since they allow for low latency reads in remote regions without
requiring that region to participate in consensus during writes. This concept is
discussed in more detail in Chapter 11.

This architecture ensures that there is no data loss in the event of a node failure, and
the system remains available, providing at least a majority of nodes remain active.

CockroachDB implements replication at the range level: each range is replicated
independently of other ranges. At any given moment, a single node is responsible for
changes to a single range, but there is no overall “primary” node within the cluster.

Raft
CockroachDB employs the widely used Raft protocol (https://cockroa.ch/3x1fR8y) as
its distributed consensus mechanism. In CockroachDB, each range is a distinct Raft
group—the consensus for each range is determined independently of other ranges.

In Raft and in most distributed consensus mechanisms, we need a minimum of three
nodes. This is because a majority of nodes (a quorum) must always agree on the state.
In the event of a network partition, only the side of the partition with the majority of
nodes can continue.

In a Raft group, one of the nodes is elected as leader by a majority of nodes in the
group. The other nodes are known as followers. The Raft leader controls changes to
the Raft group.

The CockroachDB Replication Layer | 45

https://cockroa.ch/3x1fR8y

Changes sent to the Raft leader are written to its Raft log and propagated to the
followers. When a majority of nodes accept the change, then the change is committed
by the leader. Note that in CockroachDB, each range has its own Raft log because
every range is replicated separately.

Leader elections occur regularly or may be triggered when a node fails to receive a
heartbeat message from the leader. In the latter case, a follower who cannot commu‐
nicate with the leader will declare itself a candidate and initiate an election. Raft
includes a set of safety rules that prevent any data loss during the election process. In
particular, a candidate cannot win an election unless its log contains all committed
entries.

Nodes that are temporarily disconnected from the cluster can be sent to relevant
sections of the Raft log to resynchronize or—if necessary—a point-in-time snapshot
of the state followed by a catch-up via Raft logs.

Raft and Leaseholders
The CockroachDB leaseholder and the Raft leader responsibilities serve similar pur‐
poses. The leaseholder controls access to a range for the purposes of transactional
integrity and isolation, while the Raft leader controls access to a range for the pur‐
poses of replication and data safety.

The leaseholder is the only node that can propose writes to the Raft leader.
CockroachDB will attempt to elect a leaseholder who is also the Raft leader so that
these communications can be streamlined. The leaseholder serves all writes and most
reads, so it is able to maintain the in-memory data structures necessary to mediate
read/write conflicts for the transaction layer.

Closed Timestamps and Follower Reads
Periodically the leaseholder will “close” a timestamp in the recent past, which guaran‐
tees that no new writes with lower timestamps will be accepted.

This mechanism also allows for follower reads. Normally, reads have to be serviced by
a replica’s leaseholder. This can be slow since the leaseholder may be geographically
distant from the gateway node that is issuing the query. A follower read is a read
taken from the closest replica, regardless of the replica’s leaseholder status. This can
result in much better latency in geo-distributed, multiregion deployments.

If a query uses the AS OF SYSTEM TIME clause, then the gatekeeper forwards the
request to the closest node that contains a replica of the data—whether it be a
follower or the leaseholder. The timestamp provided in the query (i.e., the AS OF
SYSTEM TIME value) must be less than or equal to the node’s closed timestamp. This
allows followers to service consistent reads in the recent past (i.e., several seconds
ago).

46 | Chapter 2: CockroachDB Architecture

Global tables in a multiregion database use a special variation of the transaction
protocol called nonblocking transactions that is optimized for reads (from any replica)
at the expense of writes. Writes to tables in this mode are assigned timestamps in
the future, and timestamps in the future may be closed. This makes it possible for
followers to serve consistent reads at the present time.

The CockroachDB Storage Layer
We touched upon the logical structure of the KV store earlier in the chapter when we
discussed the store. However, we have not yet looked at the physical implementation
of the KV storage engine.

Since CockroachDB v20.2, CockroachDB has used the Pebble storage engine—an
open source KV store inspired by the LevelDB and RocksDB storage engines. Pebble
is primarily maintained by the CockroachDB team and is optimized specifically for
CockroachDB use cases. Older versions of CockroachDB use the RocksDB storage
engine.

Let’s look under the hood of the Pebble storage engine so that we can fully appreciate
how CockroachDB stores and manipulates data at its foundational layer.

Log-Structured Merge Trees
Pebble implements the log-structured merge (LSM) tree architecture. LSM is a widely
implemented and battle-tested architecture that seeks to optimize storage and sup‐
port extremely high insert rates, while still supporting efficient random read access.

The simplest possible LSM tree consists of two indexed “trees:”

• An in-memory tree that is the recipient of all new record inserts—the MemTable.•
• A number of on-disk trees represent copies of in-memory trees that have been•

flushed to disk. These are referred to as sorted strings tables (SSTables).

SSTables exist at multiple levels, numbered L0 to L6 (L6 is also called the base
level). L0 contains an unordered set of SSTables, each of which is simply a copy of
an in-memory MemTable that has been flushed to disk. Periodically, SSTables are
compacted into larger consolidated stores in the lower levels. In levels other than L0,
SSTables are ordered and nonoverlapping so that only one SSTable per level could
possibly hold a given key.

SSTables are internally sorted and indexed, so lookups within an SSTable are fast.

The basic LSM architecture ensures that writes are always fast since they primarily
operate at memory speed, although there is often also a sequential write-ahead
log (WAL) on disk. The transfer to on-disk SSTables is also fast since it occurs

The CockroachDB Storage Layer | 47

in append-only batches using fast sequential writes. Reads occur either from the
in-memory tree or from the disk tree; in either case, reads are facilitated by an index
and are relatively swift.

Of course, if a node fails while data is in the in-memory store, then it could be lost.
For this reason, database implementations of the LSM pattern include a WAL that
persists transactions to disk. The WAL is written via fast sequential writes.

Figure 2-15 illustrates LSM writes. Writes from higher CockroachDB layers are first
applied to the WAL (1) and then to the MemTable (2). Once the MemTable reaches
a certain size, it is flushed to disk to create a new SSTable (3). Once the flush
completes, WAL records may be purged (4). Multiple SSTables are routinely merged
(compacted) into larger SSTables (5).

Figure 2-15. LSM writes

The compaction process results in multiple “levels”—Level 0 (L0) contains the
uncompacted data. Each compaction creates a file at a deeper level—up to 7 levels
(L0–L6) are typical.

SSTables and Bloom Filters
Each SSTable is indexed. However, there may be many SSTables on disk, and this
creates a multiplier effect on index lookups because we might theoretically have to
examine every index for every SSTable to find our desired row.

48 | Chapter 2: CockroachDB Architecture

To reduce the overhead of multiple index lookups, Bloom filters are used to reduce the
number of lookups that must be performed. A Bloom filter is a compact and quick-
to-maintain structure that can quickly tell you if a given SSTable “might” contain a
value. CockroachDB uses Bloom filters to quickly determine which SSTables have a
version of a key. Bloom filters are compact enough to fit in memory and are quick
to navigate. However, to achieve this compression, Bloom filters are “fuzzy” and may
return false positives. If you get a positive result from a Bloom filter, it means only
that the file may contain the value. However, the Bloom filter will never incorrectly
advise you that a value is not present. So, if a Bloom filter tells us that a key is not
included in a specific SSTable, then we can safely omit that SSTable from our lookup.

Figure 2-16 shows the read pattern for an LSM. A database request first reads from
the MemTable (1). If the required value is not found, it will consult the Bloom filters
for all SSTables in L0 (2). If the Bloom filter indicates that no matching value is
present, it will examine the SSTable in each subsequent level that covers the given key
(3). If the Bloom filter indicates a matching KV may be present in the SSTable, then
the process will use the SSTable index (4) to search for the value within the SSTable
(5). Once a matching value is found, no older SSTables need to be examined.

Figure 2-16. LSM reads

Deletes and Updates
SSTables are immutable—once the MemTable is flushed to disk and becomes an
SSTable, no further modifications to the SSTable can be performed. If a value is modi‐
fied repeatedly over a period of time, the modifications will build up across multiple
SSTables. When retrieving a value, the system will read SSTables from youngest to
oldest to find the most recent value for a key. Therefore, to update a value, we only

The CockroachDB Storage Layer | 49

need to insert the new value since the older values will not be examined when a
newer version exists.

Deletions are implemented by writing tombstone markers into the MemTable, which
eventually propagate to SSTables. Once a tombstone marker for a row is encountered,
the system stops examining older entries and reports “not found” to the application.

As SSTables multiply, read performance and storage will degrade as the number
of Bloom filters, indexes, and obsolete values increases. During compaction, rows
that are fragmented across multiple SSTables will be consolidated and deleted rows
removed. Tombstones are retained until they are compacted to the base level, L6.

Multiversion Concurrency Control
We introduced MVCC as a logical element of the transaction layer in “MVCC Princi‐
ples” on page 33. CockroachDB encodes the MVCC timestamp into each key so that
multiple MVCC versions of a key are stored as distinct keys within Pebble. However,
the Bloom filters that we introduced previously exclude the MVCC timestamp so that
a query does not need to know the exact timestamp to look up a record.

CockroachDB removes records older than the configuration variable gc.ttlseconds,
but will not remove any records covered by protected timestamps. Protected time‐
stamps are created by long-running jobs such as backups, which need to be able to
obtain a consistent view of data.

The Block Cache
Pebble implements a block cache providing fast access to frequently accessed data
items. This block cache is separate from the in-memory indexes, Bloom filters, and
MemTables. The block cache operates on a least recently used (LRU) basis—when a
new data entry is added to the cache, the entry that was least recently accessed will be
evicted from the cache.

Reading from the block cache bypasses the need to scan multiple SSTables and
associated Bloom filters. We’ll speak more about the cache in Chapter 14 when we
discuss cluster optimization.

Summary
In this chapter, we’ve given you an overview of the essential architectural elements of
CockroachDB. Although having a strong grasp of the CockroachDB architecture is
advantageous when performing advanced systems optimization or configuration, it’s
by no means a prerequisite for working with a CockroachDB system. CockroachDB
includes many sophisticated design elements, but its internal complexity is not

50 | Chapter 2: CockroachDB Architecture

reflected in its UI—you can happily develop a CockroachDB application without
mastering the architectural concepts in this chapter.

At a cluster level, a CockroachDB deployment consists of three or more symmetrical
nodes, each of which carries a complete copy of the CockroachDB software stack and
each of which can service any database client requests. Data in a CockroachDB table
is broken up into ranges of 512 MB in size and distributed across the nodes of the
cluster. Each range is replicated at least three times.

The CockroachDB software stack consists of five major layers:

• The SQL layer accepts SQL requests in the PostgreSQL wire protocol. It parses•
and optimizes the SQL requests and translates the requests into KV operations
that can be processed by lower layers.

• The transaction layer is responsible for ensuring ACID transactions and transac‐•
tion isolation. It ensures that transactions see a consistent view of data and that
modifications occur as if they had been executed one at a time.

• The distribution layer is responsible for the partitioning of data into ranges and•
the distribution of those ranges across the cluster. It is responsible for managing
Range leases and assigning leaseholders.

• The replication layer ensures that data is correctly replicated across the cluster to•
allow high availability in the event of a node failure. It implements a distributed
consensus mechanism to ensure that all nodes agree on the current state of any
data item.

• The storage layer is responsible for the persistence of data to local disk and the•
processing of low-level queries and updates on that data.

In the next chapter, we’ll gleefully abandon the complexities and sophisticated
CockroachDB architecture and focus on the far simpler task of getting started with
the CockroachDB system.

Summary | 51

CHAPTER 3

Getting Started

CockroachDB has a sophisticated and modern architecture and is designed for global
scale. However, that complexity and scalability don’t imply a steep learning curve
or barrier to entry. In this chapter, we’ll help you get started with a CockroachDB
installation and introduce you to the basics of working with a CockroachDB system.

Installation
CockroachDB can be installed on virtually any flavor of desktop OS within a few
minutes. Alternatively, you can create a free CockroachDB Cloud Basic database or
run CockroachDB within a Docker container or Kubernetes cluster.

Installing CockroachDB Software
In most scenarios, you’ll want to have the CockroachDB software installed on your
desktop computer, so let’s start with that. You’ll find a full list of binaries in the
CockroachDB docs (https://cockroa.ch/3DChScP). From there, you can pick your OS
and download the most recent version or pick a previous version.

The instructions that follow worked as of the time of writing, but installation can
change with each release, so make sure you consult the CockroachDB website for the
most up-to-date instructions.

Installation on macOS
If you have the Homebrew package manager installed, then that is probably the easi‐
est way to get started installing CockroachDB on Mac. In fact, even if you don’t have
Homebrew installed, it’s probably easier to install it and then install CockroachDB
than to install CockroachDB manually.

53

https://cockroa.ch/3DChScP

To install Homebrew, issue the following command from a terminal window:

/bin/bash -c \
"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh

Once Homebrew is installed, you can install CockroachDB with this command:

% brew install cockroachdb/tap/cockroach
==> Tapping cockroachdb/tap
Cloning into '/usr/local/Homebrew/Library/Taps/cockroachdb/homebrew-tap'...
 …
==> Installing cockroach from cockroachdb/tap
….
To have launchd start cockroachdb/tap/cockroach now and restart at login:
 brew services start cockroachdb/tap/cockroach
Or, if you don't want/need a background service you can just run:
 cockroach start-single-node --insecure
==> Summary
/usr/local/Cellar/cockroach/24.2.0: 195 files, 289.2MB, built in 7 seconds

One of the great things about Homebrew is that it sets up CockroachDB as a service,
so you can issue brew services start cockroach to start a background instance of
CockroachDB. However, if you don’t want to use Homebrew, then you can download
the CockroachDB binary directly and copy the binary into your path. Review the
releases documentation (https://cockroa.ch/3j1bUbQ) to determine the path for the
release you want, then use curl or wget to copy and decompress that release:

% curl https://binaries.cockroachdb.com/cockroach-v24.2.0.darwin-11.0-arm64.tgz \
 | tar -xJ
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 120M 100 120M 0 0 8196k 0 0:00:15 0:00:15 --:--:-- 7955k

You can then copy the binary into your path so you can execute Cockroach com‐
mands from any directory:

sudo cp -R cockroach-v24.2.0.darwin-11.0-arm64/* /usr/local/bin

Once you’ve installed CockroachDB either manually or via Homebrew, run the
cockroach demo command to start a demo instance and confirm that it is running:

% cockroach demo
#
Welcome to the CockroachDB demo database!
#
You are connected to a temporary, in-memory CockroachDB cluster of 1 node.
#
Enter \? for a brief introduction.
#

54 | Chapter 3: Getting Started

https://cockroa.ch/3j1bUbQ

demo@127.0.0.1:26257/movr> show databases;
 database_name | owner | primary_region | regions | survival_goal
----------------+-------+----------------+---------+----------------
 defaultdb | root | NULL | {} | NULL
 movr | demo | NULL | {} | NULL
 postgres | root | NULL | {} | NULL
 system | node | NULL | {} | NULL
(4 rows)

Time: 2ms total (execution 1ms / network 0ms)

Installation on Linux
To perform a basic installation on Linux, find the latest release (https://cockroa.ch/
3DChScP) (or a specific version you’re interested in), and download and unpack it. Of
course, you can use curl or wget to obtain the tarball once you have determined its
path:

$ wget https://binaries.cockroachdb.com/cockroach-v24.2.0.linux-arm64.tgz

2024-09-09 08:01:44 (7.71 MB/s) - ‘cockroach-v24.2.0.linux-arm64.tgz’ saved

$ tar zxvf cockroach-v24.2.0.linux-arm64.tgz
cockroach-v24.2.0.linux-arm64/cockroach
cockroach-v24.2.0.linux-arm64/lib/libgeos.so
cockroach-v24.2.0.linux-arm64/lib/libgeos_c.so

$ sudo cp -r cockroach-v24.2.0.linux-arm64/* /usr/local/bin

Once installed, run the cockroach demo command to start a temporary local instance
of CockroachDB and verify the installation:

$ cockroach demo
#
Welcome to the CockroachDB demo database!
#
You are connected to a temporary, in-memory CockroachDB cluster of 1 node.
#
…
#
Enter \? for a brief introduction.
#
root@127.0.0.1:44913/movr> show databases;
 database_name | owner
----------------+--------
 defaultdb | root
 movr | root
 postgres | root
 system | node
(4 rows)

Time: 1ms total (execution 1ms / network 0ms)

Installation | 55

https://cockroa.ch/3DChScP

root@127.0.0.1:44913/movr>

For a completely manual installation like this, you may have to install geo-spatial
libraries manually if you want to use geo-spatial features. See the CockroachDB
documentation (https://cockroa.ch/3PNKDdr) for more details.

Installation on Microsoft Windows
Microsoft Windows is not a fully supported platform for running a CockroachDB
server. However, Windows is completely supported for CockroachDB clients and the
server runs well enough for experimentation and most development.

Find the link for the release (https://cockroa.ch/3ukrENL) you’d like to download.
Once downloaded, unzip the archive into a directory and add the subdirectory
containing the cockroach.exe file to your path. Alternatively, you can download the
file directly from a PowerShell prompt. Instructions for doing so can be found on the
CockroachDB documentation site (https://cockroa.ch/3nWawds).

CockroachDB URLs
When connecting to a CockroachDB cluster, we need to identify the location and
credentials with which we wish to connect. When connecting to a local server using
cockroach demo or cockroach sql, the CockroachDB client will default to a local
server on the default port, but as we will see, more complex installations require quite
a bit more information.

The most common way to connect is to use a PostgreSQL-compatible URL. This URL
is of the following format:

postgresql://[user[:passwd]]@[host][:port]/[db][?parameters...]

The simplest possible URL for a local cluster running without authentication would
look something like this:

$ cockroach sql --url 'postgres://root@localhost:26257?sslmode=disable'
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Cluster ID: 072189bb-3970-4f37-afe4-55bc37cdf76e
#
Enter \? for a brief introduction.
#
root@localhost:26257/defaultdb>

56 | Chapter 3: Getting Started

https://cockroa.ch/3PNKDdr
https://cockroa.ch/3PNKDdr
https://cockroa.ch/3ukrENL
https://cockroa.ch/3nWawds

This is equivalent to running the command cockroach sql — insecure.

The beauty of the URL is that it can be accepted by most PostgreSQL-compatible
programs or drivers. For instance, if we have the PostgreSQL client installed, we can
use it to connect to CockroachDB:

$ psql 'postgres://root@localhost:26257?sslmode=disable'
psql (13.2, server 9.5.0)
Type "help" for help.

root=#

Creating a CockroachDB Cloud Basic Instance
The cockroach demo command is a handy way to play around with the
CockroachDB server, but the easiest way to get a fully functional CockroachDB
server with persistent storage is to take advantage of the free CockroachDB Cloud
Basic database service. This service grants you access to a fully functional multitenant
cloud service with 10 GiB of storage.

CockroachDB Cloud Basic has a number of advantages compared with a desktop
deployment:

• It’s automatically configured for high availability and backup. You don’t have to•
worry about losing your data in the event of a hard drive failure on your desktop.

• It’s fully secured using encryption at rest and in transit.•
• It’s available from anywhere, so it can be used for team development purposes.•
• It’s well-suited for starter projects and evaluating CockroachDB. To create•

a CockroachDB Cloud Basic cluster, navigate to the signup page (https://cock
roa.ch/38sTXkv) and select the Basic plan.

After entering your details and validating your email address, you’ll be given the
option to create your free cluster.

Once the cluster is created, you’ll be given instructions on how to connect. These
instructions will be similar to users of every operating system, but for a Mac user,
they’ll look something like Figure 3-1.

Installation | 57

https://cockroa.ch/38sTXkv

Figure 3-1. Connection instructions

Assuming you have already downloaded the CockroachDB binary, issue the curl
command from the instructions to copy the necessary certificates to the desktop, then
the cockroach sql command to connect to the database:

$ curl –create-dirs -o $HOME/.postgresql/root.crt -O \
 https://cockroachlabs.cloud/clusters/614eb05c-0493-4947-962a-b07e3b282ef2/cert

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 2728 0 2728 0 0 5250 0 --:--:-- --:--:-- --:--:-- 5317

$ cockroach sql \
 –url "postgresql://rob:xxxx@cloudy-jackal-5535.j77.aws-eu-west-1.cockroachlabs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#

58 | Chapter 3: Getting Started

Cluster ID: 614eb05c-0493-4947-962a-b07e3b282ef2
warning: cannot show server execution timings: unexpected column found
#
Enter \? For a brief introduction.
#
rob@cloudy-jackal.../defaultdb> SELECT
 database_name,
 primary_region,
 regions,
 survival_goal
 FROM [SHOW DATABASES];

 database_name | primary_region | regions | survival_goal
----------------+----------------+-----------------+----------------
 defaultdb | NULL | {} | NULL
 postgres | NULL | {} | NULL
 system | aws-eu-west-1 | {aws-eu-west-1} | zone
(3 rows)

Time: 32ms total (execution 7ms / network 26ms)

CockroachDB Cloud Basic Passwords
Note that the password in the connection string is not the password you provided
to connect to your CockroachDB Cloud Basic account. Your CockroachDB Cloud
Basic account might be associated with many databases, each of which has its own
password. The password shown in the connection dialog will be shown only if you
hover over the REVEAL_PASSWORD link and will be shown only at this point in the
database creation. It’s up to you to save that password and keep it safe. If you forget
your password, you can reset it by going to the SQL Users page.

Starting a Local Single-Node Server
As we’ve seen previously, you can use the cockroach demo command to start a
temporary demo cluster, and we can quickly create a free CockroachDB Cloud Basic
cluster. If you want to start a single-node CockroachDB server with persistent storage
on your own hardware, you can use the cockroach start-single-node command:

$ cockroach start-single-node --insecure --listen-addr=localhost
*
* WARNING: ALL SECURITY CONTROLS HAVE BEEN DISABLED!
*
* This mode is intended for non-production testing only.
*
* In this mode:
* - Your cluster is open to any client that can access any
 of your IP addresses.
* - Intruders with access to your machine or network can observe

Installation | 59

 client/server traffic.
* - Intruders can log in without password and read or write any
 data in the cluster.
* - Intruders can consume all your server's resources and cause unavailability.
*
*
* INFO: To start a secure server without mandating TLS for clients,
* consider --accept-sql-without-tls instead. For other options, see:
*
* - https://go.crdb.dev/issue-v/53404/v24.2
* - https://www.cockroachlabs.com/docs/v24.2/secure-a-cluster.html
*

This will start a single-node CockroachDB cluster with no security. To connect to this
server, we can use the cockroach sql command with the default connection string:

$ cockroach sql --insecure
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Cluster ID: 848d8b85-4000-484a-b4ad-8f2c76c68221
#
Enter \? for a brief introduction.
#
root@:26257/defaultdb> show databases;
 database_name | owner | primary_region | regions | survival_goal
----------------+-------+----------------+---------+----------------
 defaultdb | root | NULL | {} | NULL
 postgres | root | NULL | {} | NULL
 system | node | NULL | {} | NULL
(3 rows)

Time: 3ms total (execution 3ms / network 0ms)

root@:26257/defaultdb>

Insecure Mode
The use of the --insecure flag is convenient for quickly starting a CockroachDB
cluster, but it’s absolutely not appropriate for a production system. Please see Chap‐
ter 10 for instructions on setting up a properly secured production system.

Starting Up CockroachDB in a Docker Container
If you have Docker, you can quickly start a CockroachDB single-node instance inside
a Docker container. You’ll need a persistent volume for data, so let’s create that first:

$ docker volume create crdb1

60 | Chapter 3: Getting Started

Then, we invoke docker run to pull and start the latest CockroachDB Docker image
and start the server in single-node, insecure mode:

$ docker run -d \
> --name=crdb1 \
> --hostname=crdb1 \
> -p 26257:26257 -p 8080:8080 \
> -v "crdb1:/cockroach/cockroach-data" \
> cockroachdb/cockroach:latest start-single-node \
> --insecure \
>
Unable to find image 'cockroachdb/cockroach:latest' locally
latest: Pulling from cockroachdb/cockroach
a591faa84ab0: Pull complete
…
6913e7a5719….914b1aafe8

The output of the docker run command is the container identifier for the
CockroachDB container. Using that containerId, we can connect to that container
using the cockroach sql command:

$ docker exec -it 6913e7a5719….914b1aafe8 \
 cockroach sql --insecure
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Cluster ID: 8fcbb9bb-ec7c-40dc-afe0-90306c87f5d7
#
Enter \? for a brief introduction.
#
root@:26257/defaultdb> show databases;
 database_name | owner | primary_region | regions | survival_goal
----------------+-------+----------------+---------+----------------
 defaultdb | root | NULL | {} | NULL
 postgres | root | NULL | {} | NULL
 system | node | NULL | {} | NULL
(3 rows)

Time: 4ms total (execution 3ms / network 1ms)

We don’t need to have the CockroachDB software installed on our local host to
connect using the preceding method because we’re using the CockroachDB client
installed within the Docker container. However, since we’ve forwarded port 26257
from the Docker container, we can attach from the desktop using the default
connection:

$ ~ cockroach sql --insecure
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.

Installation | 61

To exit, type: \q.
#
Cluster ID: d070609f-58a7-4aea-aa27-92bc4a1e5406
#
Enter \? for a brief introduction.
#
root@:26257/defaultdb>

Note that this port forwarding can work only if there’s not already a CockroachDB
server listening on that port.

Starting Up a Secure Server
In the previous examples, we’ve used the --insecure flag to start the server without
needing to configure secure communications. This is a quick way to set up a test
server but is catastrophically dangerous for anything that contains valuable data.

We’ll cover CockroachDB security in depth within Chapter 13, but for now, to set up
a secure server, we need to create security certificates to encrypt the communications
channel and authenticate the client and server.

The following commands create the certificates. The certificate authority key will
be held in my-safe-directory; the certificates themselves will be held in the certs
directory:

$ mkdir certs my-safe-directory

$ # CA certificate and keypair

$ cockroach cert create-ca \
> --certs-dir=certs \
> --ca-key=my-safe-directory/ca.key

$ # certificate and keypair for localhost
$ cockroach cert create-node localhost `hostname` --certs-dir=certs \
> --ca-key=my-safe-directory/ca.key

$ # certificate for the root user
$ cockroach cert create-client root \
> --certs-dir=certs \
> --ca-key=my-safe-directory/ca.key

We can now start the server and specify the directory containing the certificates:

$ # start single node
$ cockroach start-single-node --certs-dir=certs \
 --listen-addr=localhost

Now, when connecting, we must specify the certificates directory. If we’re connecting
from a remote host, then we would need to copy the certificates to that host.

62 | Chapter 3: Getting Started

$ cockroach sql --certs-dir=certs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Cluster ID: f908d29e-1fb6-40b8-9e1f-a2a0a3763603
#
Enter \? for a brief introduction.
#
root@:26257/defaultdb>

Certificates Directory
On Linux or macOS systems, CockroachDB will look for certificates in the
~/.cockroach-certs directory. If your certificates are placed there, then you won’t need
to specify the --certs-dir argument. However, if you have multiple CockroachDB
servers, then you may need to maintain distinct certificates for each, possibly in their
own directories.

Shutting Down the Server
If the server has been started with the --background flag, then we shut down the
server using a kill signal. For instance, killall can be used to issue a kill command
to all cockroach commands currently running:

$ killall cockroach

initiating graceful shutdown of server
server drained and shutdown completed

To kill a specific server, identify its process ID and then issue the kill command
specifying the process ID:

$ ps -ef |grep cockroach
ubuntu 13911 1 10 10:16 pts/0 00:00:43 cockroach
 start-single-node --insecure --listen-addr=localhost

$ kill 13911
$ initiating graceful shutdown of server
server drained and shutdown completed

Remote Connection
In the previous examples, we’ve connected to a server running on the same host as
our client. This is pretty unusual in the real world, where we would normally be
connecting to a server on another machine. Typically, we’d specify the URL parameter

Installation | 63

to identify the server concerned. For instance, to connect to a server on the mubuntu
server on the default port, we could issue the following command:

$ cockroach sql --certs-dir=certs --url postgresql://root@mubuntu:26257/defaultdb
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Cluster ID: f908d29e-1fb6-40b8-9e1f-a2a0a3763603
#
Enter \? for a brief introduction.
#
root@mubuntu:26257/defaultdb>

Creating a Kubernetes Cluster
In earlier examples, we’ve created single-node clusters and connected to a free
CockroachDB Cloud Basic database that is a shared region of a multitenant cluster.
If you want to start with a dedicated multinode cluster, then the easiest way is to
install a CockroachDB cluster in a Kubernetes environment using the CockroachDB
Kubernetes operator.

Kubernetes is an increasingly ubiquitous framework that coordinates—orchestrates—
the management of the components of a distributed system. The CockroachDB
Kubernetes operator contains the configuration and utilities that allow CockroachDB
to be deployed in Kubernetes.

We’ll come back to production deployment options for Kubernetes later in the book.
For now, we will deploy CockroachDB in a Kubernetes minikube cluster, which
implements a local Kubernetes cluster on a desktop system.

For this example, we are using a minikube cluster running on macOS with 6 CPUs
and 12 GB of memory. You can start such a cluster with the following command:

~ minikube start --memory=12G --cpus=6
😀 minikube v1.18.1 on Darwin 12.1

The first step is to deploy the operator and its manifest:

$ kubectl apply -f https://cockroa.ch/crdbclusters_yaml

customresourcedefinition.apiextensions.k8s.io/crdbclusters.crdb.cockroachlabs.com
created

$ kubectl apply -f https://cockroa.ch/operator_yaml

clusterrole.rbac.authorization.k8s.io/cockroach-database-role created
serviceaccount/cockroach-database-sa created
clusterrolebinding.rbac.authorization.k8s.io/cockroach-database-rolebinding
created

64 | Chapter 3: Getting Started

role.rbac.authorization.k8s.io/cockroach-operator-role created
clusterrolebinding.rbac.authorization.k8s.io/cockroach-operator-rolebinding
created
clusterrole.rbac.authorization.k8s.io/cockroach-operator-role created
serviceaccount/cockroach-operator-sa created
rolebinding.rbac.authorization.k8s.io/cockroach-operator-default created
deployment.apps/cockroach-operator created

Once this is done, a kubectl get pods command should show the CockroachDB
Kubernetes operator running inside the cluster:

$ kubectl config set-context --current --namespace=cockroach-operator-system
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
cockroach-operator-84bf588dbb-65m8k 0/1 ContainerCreating 0 9s

We then retrieve the example configuration file that is included in the operator’s
repository:

$ curl -O https://cockroa.ch/example_yaml -o example.yaml

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1098 100 1098 0 0 3399 0 --:--:-- --:--:-- --:--:-- 3399

This file contains definitions for the cluster to be configured, such as the number
of nodes to be created and the memory and CPU required by each node. The
configuration is tilted toward a production deployment, so you might want to trim
down the requirements. For instance, in the following code we see that the default
configuration file specifies a 60 GB storage requirement. We might want to change
this to a lower value for a simple test system (or increase it for a bigger deployment):

apiVersion: crdb.cockroachlabs.com/v1alpha1
kind: CrdbCluster
metadata:
 name: cockroachdb
spec:
 dataStore:
 pvc:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: "60Gi"
 volumeMode: Filesystem

You could edit other elements of the configuration file, such as the number of nodes
to be created or the version of CockroachDB to be used.

Installation | 65

We now apply the configuration file to the operator, which will perform the necessary
tasks to create the cluster:

$ kubectl apply -f example.yaml
crdbcluster.crdb.cockroachlabs.com/cockroachdb created

The cluster creation process can take some time. We’ll know it’s complete when a
kubectl get pods command shows all nodes in Running state:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
cockroach-operator-84bf588dbb-65m8k 1/1 Running 0 6m59s
cockroachdb-0 1/1 Running 0 87s
cockroachdb-1 1/1 Running 0 71s
cockroachdb-2 1/1 Running 0 57s

We can connect to the cluster by invoking the cockroach sql command from within
any of the CockroachDB nodes. For instance, here we connect to cockroachdb-2 and
connect to the cluster:

$ kubectl exec -it cockroachdb-2 -- ./cockroach sql --certs-dir cockroach-certs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Cluster ID: cb78255b-befa-4447-9fa8-c06b7a353564
#
Enter \? for a brief introduction.
#
 database_name | owner | primary_region | regions | survival_goal
----------------+-------+----------------+---------+----------------
 defaultdb | root | NULL | {} | NULL
 postgres | root | NULL | {} | NULL
 system | node | NULL | {} | NULL
(3 rows)

Time: 7ms total (execution 6ms / network 1ms)

Connecting to the cluster using this method requires a high level of access to the
cluster. In a production environment, we would set up a load balancer to securely
handle incoming requests to the cluster. We’ll look at these sorts of configurations in
Chapter 10.

Creating a Cluster with Terraform
CockroachDB Cloud clusters can be created and configured using Terraform, a
popular infrastructure as code (IaC) platform from HashiCorp. In this section, we’ll
create a CockroachDB Cloud Basic, Standard, and Advanced cluster using Terraform.

66 | Chapter 3: Getting Started

We’ll start by initializing the CockroachDB Terraform provider (https://cockroa.ch/
4euCuVx):

terraform {
 required_providers {
 cockroach = {
 source = "cockroachdb/cockroach"
 version = "2.0.0"
 }
 }
}

Next, we’ll create a folder. While optional, folders can help customers organize their
CockroachDB Cloud clusters and can be nested up to four levels deep. On the Billing
dashboard (https://cockroa.ch/4eeKXfI), folders allow customers to view the aggregate
cost of any clusters within them.

resource "cockroach_folder" "top" {
 name = "level_1"
 parent_id = "root"
}

resource "cockroach_folder" "nested" {
 name = "level_2"
 parent_id = cockroach_folder.top.id
}

Next we’ll create the clusters, starting with a CockroachDB Cloud Basic cluster in
AWS. The following Terraform resource creates a Basic cluster across three regions,
specifying a cap of 1,000,000 Request Units (RUs) per month and a storage limit of 1
GiB. The parent_id references the ID of the nested folder we defined previously:

resource "cockroach_cluster" "basic" {
 cloud_provider = "AWS"
 name = "aws-basic"
 regions = [
 { name : "us-east-1", primary = true },
 { name : "eu-central-1" },
 { name : "ap-southeast-1" }
]

 serverless = {
 usage_limits = {
 request_unit_limit = 1000000
 storage_mib_limit = 1024
 }
 }

 parent_id = cockroach_folder.nested.id
}

Installation | 67

https://cockroa.ch/4euCuVx
https://cockroa.ch/4eeKXfI
https://cockroa.ch/4eeKXfI

Next, we’ll create a CockroachDB Cloud Standard cluster in GCP. As with the Basic
cluster, the Standard cluster will run across three regions, but this time we’re limiting
it by vCPUs, guaranteeing the cluster access to 2 vCPUs:

resource "cockroach_cluster" "standard" {
 cloud_provider = "GCP"
 name = "gcp-standard"
 regions = [
 { name : "us-east1", primary = true },
 { name : "europe-west1" },
 { name : "asia-southeast1" }
]

 serverless = {
 usage_limits = {
 provisioned_virtual_cpus = 2
 }
 }

 parent_id = cockroach_folder.nested.id
}

Finally, we’ll create a CockroachDB Cloud Advanced cluster in Azure. As with the
Basic and Standard clusters, the Advanced cluster will run across three regions.
Unlike the Basic and Standard clusters, however, Advanced clusters run with dedica‐
ted hardware, so we specify a node count per region, a disk size in GiB, and a vCPU
count for each node:

resource "cockroach_cluster" "advanced" {
 cloud_provider = "AZURE"
 name = "azure-advanced"
 regions = [
 {
 name : "eastus",
 node_count = 3
 },
 {
 name : "germanywestcentral",
 node_count = 3
 },
 {
 name : "southeastasia",
 node_count = 3
 }
]

 dedicated = {
 storage_gib = 16
 num_virtual_cpus = 4
 }

68 | Chapter 3: Getting Started

 parent_id = cockroach_folder.nested.id
}

For the Standard cluster, let’s provide some more resources to better understand the
options available. This will not be exhaustive, and the full list of available resources
can be found in the CockroachDB Terraform Provider documentation (https://cock
roa.ch/4euCuVx).

First, let’s define an IP allow list, granting access to all IPs globally. Typically, you’d
want to expose your cluster privately via technologies like VPC Peering, AWS Private‐
Link, and GCP Private Service Connect, but for this example we’ll keep things simple:

resource "cockroach_allow_list" "standard" {
 name = "Unrestricted access"
 cidr_ip = "0.0.0.0"
 cidr_mask = 0
 sql = true
 ui = false
 cluster_id = cockroach_cluster.standard.id
}

Next, we’ll create a SQL user with a password. We’ll generate the password, so we’ll
need to use an output block to make it available once applied:

resource "random_password" "standard" {
 special = false
 length = 50
}

resource "cockroach_sql_user" "standard" {
 cluster_id = cockroach_cluster.standard.id
 name = "rob"
 password = random_password.standard.result
}

output "password" {
 value = cockroach_sql_user.standard.password
 sensitive = true
}

Post apply, we can access the password as follows:

terraform output -raw password
rk7B6QncmN2jRvU2...

Databases can also be defined in Terraform. Let’s create an example database for the
Standard cluster:

resource "cockroach_database" "standard" {
 name = "accounts"
 cluster_id = cockroach_cluster.standard.id
}

Installation | 69

https://cockroa.ch/4euCuVx

Finally, we’ll create a service account with minimal access to the cluster. This account
could be used for things like accessing the Metrics Export endpoint. As with the user
password, we’ll need to output the API key for it to be available outside of Terraform:

resource "cockroach_service_account" "standard_monitor" {
 name = "standard-cluster-monitor"
 description = "A service account for use in monitoring the standard cluster."
}

resource "cockroach_user_role_grant" "standard_monitor" {
 user_id = cockroach_service_account.standard_monitor.id
 role = {
 role_name = "CLUSTER_OPERATOR_WRITER",
 resource_type = "CLUSTER",
 resource_id = cockroach_cluster.standard.id
 }
}

resource "cockroach_api_key" "standard_monitor" {
 name = "standard-cluster-monitor-key-v1"
 service_account_id = cockroach_service_account.standard_monitor.id
}

output "standard_monitor_api_key" {
 value = cockroach_api_key.standard_monitor.secret
 description = "The standard-cluster-monitor-key-v1 API key"
 sensitive = true
}

Post apply, we can access the API key as follows:

terraform output -raw standard_monitor_api_key
CCDB1_X363xP8T6Y...

The configuration can be applied as follows:

terraform apply

And destroyed as follows:

terraform destroy

Using a GUI Client
While some are more than happy to use only a command-line client to interact with
a database, some of us prefer a GUI. Many GUI applications for PostgreSQL exist,
and most of these will work with CockroachDB. However, DBeaver Community
edition (https://dbeaver.io) is a free database GUI that has dedicated support for
CockroachDB.

The CockroachDB documentation has some further information about using
DBeaver (https://cockroa.ch/3DHtScT).

70 | Chapter 3: Getting Started

https://dbeaver.io
https://dbeaver.io
https://cockroa.ch/3DHtScT

Exploring CockroachDB
Now that we’ve got access to a CockroachDB cluster and have the client ready to
connect, let’s take CockroachDB for a drive! In the following examples, we are using
a local cluster—the connection strings may be different if you are using a Cloud Basic
instance.

Adding Some Data
As folks say in Australia, “A database without data is like a pub with no beer!” Let’s get
some data into the database so that we have something to look at.

The CockroachDB software includes a number of demonstration databases that you
can quickly add to your CockroachDB installation. In some cases, these databases
are prepopulated with data; in other cases, you create the schemas and then add data
afterward.

To initialize the schemas, we use the cockroach workload init [schema] com‐
mand. To run a workload against the schema, we use the cockroach workload run
[schema] command. The schemas include:

bank

Models a set of accounts with currency balances. After initializing the schema,
use workload run to generate a workload against the database.

intro

A simple single-table database.

kv

A simple KV schema. After initializing the schema, use run to generate a work‐
load that will be evenly distributed across the cluster.

movr

A schema for a fictional ride-sharing application. This schema can be used with
the workload run command to generate load against the databases.

startrek

A Star Trek database, with two tables, episodes and quotes.

tpcc

A transaction processing schema for the TPC-C standard benchmark. This
schema can be used with the workload run command to generate load against
the databases.

Exploring CockroachDB | 71

ycsb

The Yahoo Cloud Serving Benchmark schema. This schema can be used with the
workload run command to generate load against the databases.

For the intro and startrek databases, we create the tables and data using the
workload init command. For instance, in the following example, we create the
startrek schema and look at some data:

$ cockroach workload init startrek \
 ‘postgres://root@localhost:26257?sslmode=disable
I210501 04:29:29.694340 1 imported episodes (0s, 79 rows)
I210501 04:29:29.898945 1 imported quotes (0s, 200 rows)
$ cockroach sql --insecure
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
#
Enter \? for a brief introduction.
#
root@:26257/defaultdb> show databases;

 database_name | owner | primary_region | regions | survival_goal
----------------+-------+----------------+---------+----------------
 defaultdb | root | NULL | {} | NULL
 postgres | root | NULL | {} | NULL
 startrek | root | NULL | {} | NULL
 system | node | NULL | {} | NULL
(4 rows)

Time: 3ms total (execution 3ms / network 1ms)

root@:26257/defaultdb> use startrek;
SET

Time: 1ms total (execution 0ms / network 0ms)

root@:26257/startrek> show tables;

 schema_name | table_name | type | owner | estimated_row_count | locality
--------------+------------+-------+-------+---------------------+-----------
 public | episodes | table | root | 0 | NULL
 public | quotes | table | root | 0 | NULL
(2 rows)

Time: 24ms total (execution 24ms / network 0ms)

72 | Chapter 3: Getting Started

root@:26257/startrek> select * from episodes limit 1;
 id | season | num | title | stardate
-----+--------+-----+--------------+-----------
 1 | 1 | 1 | The Man Trap | 1531.1
(1 row)

Time: 1ms total (execution 1ms / network 0ms)

In this example, we create the bank schema:

$ cockroach workload init bank \
 ‘postgres://root@localhost:26257?sslmode=disable’
I210501 04:31:41.214008 1 imported bank (0s, 1000 rows)
I210501 04:31:41.221478 1 starting 9 splits

And then run a workload simulation for 60 seconds:

$ cockroach workload run bank ‘postgres://root@localhost:26257?sslmode=disable’ \
 --duration 60s
I210501 04:33:52.340852 1 creating load generator...
I210501 04:33:52.344074 1 creating load generator... done (took 3.220303ms)
_elapsed_ops/sec(inst)___ops/sec(cum)__p50(ms)__p95(ms)_pMax(ms)
 1.0s 187.3 187.9 16.8 48.2 121.6 transfer
 2.0s 295.0 241.5 11.0 31.5 79.7 transfer
 3.0s 260.9 248.0 13.1 37.7 83.9 transfer
 4.0s 203.1 236.7 17.8 39.8 79.7 <snip>

_elapsed____ops(total)___ops/sec(cum)__avg(ms)__p50(ms)__p99(ms)_pMax(ms
 60.0s 14230 237.2 16.9 13.6 65.0 192.9

The run command is primarily meant to generate data for load testing purposes but is
useful to generate data for query purposes as well.

Databases and Tables
As we’ve seen already, data in a CockroachDB deployment is organized into specific
namespaces called databases. Database is a fairly loosely used and overloaded term—
it’s quite common for a CockroachDB cluster to be referred to as a database or for a
database within a cluster to be referred to as a schema. However, in CockroachDB,
as in most other SQL databases, a database cluster contains one or more databases.
Within a database, one or more schemas may be defined, though it’s common for
each database to contain only one schema.

We can list the databases in the cluster using the show databases command:

root@:26257/defaultdb> show databases;
 database_name | owner | primary_region | regions | survival_goal
----------------+-------+----------------+---------+----------------
 bank | root | NULL | {} | NULL
 defaultdb | root | NULL | {} | NULL
 postgres | root | NULL | {} | NULL

Exploring CockroachDB | 73

 startrek | root | NULL | {} | NULL
 system | node | NULL | {} | NULL
(5 rows)

We can set our current database with the use command:

root@:26257/defaultdb> use startrek;
SET

Time: 1ms total (execution 0ms / network 0ms)

We list tables within a database with the show tables command:

root@:26257/startrek> show tables;
 schema_name | table_name | type | owner | estimated_row_count | locality
--------------+------------+-------+-------+---------------------+-----------
 public | episodes | table | root | 79 | NULL
 public | quotes | table | root | 200 | NULL
(2 rows)

Time: 16ms total (execution 16ms / network 0ms)

We can describe a table using the \d command:

root@:26257/startrek> \d quotes;
 column_name | data_type | is_nullable | column_default | indices
--------------+-----------+-------------+----------------+----------------------
 quote | STRING | true | NULL | {primary}
 characters | STRING | true | NULL | {primary}
 stardate | DECIMAL | true | NULL | {primary}
 episode | INT8 | true | NULL | {primary,quotes_epis
 rowid | INT8 | false | unique_rowid() | {primary,quotes_epis
(5 rows)

Time: 13ms total (execution 12ms / network 1ms)

Issuing SQL
From the CockroachDB client, we can issue any SQL commands for which we are
authorized.

Here we connect to the Star Trek sample database and issue a query to find the
episodes with the most quotes:

root@localhost:26257/defaultdb> USE startrek;

SELECT id,
 title,
 count(*) AS quote_count
FROM episodes AS e
 LEFT OUTER JOIN quotes AS q ON (e.id = q.episode)
GROUP BY id,
 title
ORDER BY 3 DESC

74 | Chapter 3: Getting Started

LIMIT 10;
SET

Time: 1ms total (execution 0ms / network 1ms)

 id | title | quote_count
-----+---------------------------------+--------------
 53 | The Ultimate Computer | 11
 77 | The Savage Curtain | 9
 11 | The Menagerie, Part I | 7
 38 | Metamorphosis | 7
 16 | The Galileo Seven | 7
 28 | The City on the Edge of Forever | 6
 26 | Errand of Mercy | 6
 24 | This Side of Paradise | 5
 23 | A Taste of Armageddon | 5
 37 | I, Mudd | 5
(10 rows)

Time: 5ms total (execution 3ms / network 1ms)

The DB Console
The CockroachDB server exposes a web-based client that shows the status of the
cluster and useful performance metrics. The web server is usually exposed on port
8080, though this can be changed using the --http-addr setting when starting the
server.

The full DB Console is available for self-hosted and CockroachDB Cloud Advanced
clusters. CockroachDB Cloud Basic and Standard clusters use a simplified version of
the console.

Working with Programming Languages
Working with the CockroachDB shell is useful for experimentation, but eventually,
most databases interact with application code written in languages such as JavaScript,
Java, Go, or Python.

Because CockroachDB is wire-compatible with Postgres, most Postgres-compatible
drivers will work with CockroachDB. Indeed, there are no CockroachDB-specific
drivers on the market because the Postgres drivers work so well. In this section, we’ll
get you up to speed with “hello world” programs in Java, Go, Python, and JavaScript
that connect to and query a CockroachDB cluster. A full list of supported languages
can be found in the CockroachDB online documentation (https://cockroa.ch/3j6S8fb).

Working with Programming Languages | 75

https://cockroa.ch/3j6S8fb

Connecting to CockroachDB from Node.js
Server-side JavaScript using the Node.js platform is an increasingly popular choice
for application development because it allows the same JavaScript language to be used
for both frontend web presentation code and server-side application logic.

Assuming that you have Node.js and the Node package manager (npm) installed,
we’ll use the node-postgres driver to connect to CockroachDB. We can install this
driver with the following command:

npm install pg

Once pg is installed, then the following example should connect to any CockroachDB
database using a connection URI:

// Example of connecting to CockroachDB using Node.js

const CrClient = require('pg').Client; //load pg client

async function main() {
 try {
 // Check parameters
 if (process.argv.length != 3) {
 console.log('Usage: node helloWorld.js CONNECTION_URI');
 process.exit(1);
 }
 // Establish a connection using the command-line URI
 const connectionString = process.argv[2];
 const crClient = new CrClient(connectionString);
 await crClient.connect();

 // Issue a SELECT
 const data = await crClient.query(
 `SELECT CONCAT('Hello from CockroachDB at ',
 CAST (NOW() as STRING)) as hello`
);
 // Print out the error message
 console.log(data.rows[0].hello);
 } catch (error) {
 console.log(error.stack);
 }
 // Exit
 process.exit(0);
}

main();

This program expects the connection string to be provided as the first argument
to the program. The process.argv array contains the full command line including
"node" and "helloWorld.js", so the URI actually shows up as the third element in
the array.

76 | Chapter 3: Getting Started

We then attempt to establish a connection using that connection string, then issue a
SELECT statement that retrieves the time as known to the server.

Here we connect to a CockroachDB Cloud Basic cluster:

$ node helloWorld.js "postgresql://jesse:xxxxxxxxxxxx
aws-us-west-2.cockroachlabs.cloud:26257/defaultdb?
sslmode=verify-full&sslrootcert=$HOME/.postgresql/root.crt&
options=--cluster%3Dalert-dingo-2030"

Hello from CockroachDB at 2024-05-02 00:17:40.835834+00:00

And here we connect to a local CockroachDB running in insecure mode:

$ node helloWorld.js 'postgres://root@localhost:26257?sslmode=disable'
Hello from CockroachDB at 2024-05-02 00:32:39.125419+00:00

Connecting to CockroachDB from Java
Java is the workhorse of millions of applications across all industries and contexts. In
this example, we will use the official PostgreSQL Java Database Connectivity (JDBC)
driver to connect to a CockroachDB server. Download the JDBC driver (https://cock
roa.ch/3DHucID) and place it in your class path or configure it as a dependency in
your IDE.

The following program accepts a URL, username, and password as arguments on the
command line, connects to the CockroachDB cluster concerned, and issues a SELECT
statement:

package helloCRDB;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class HelloCRDB {
 public static void main(String[] args) {
 Connection cdb = null;
 try {
 Class.forName("org.postgresql.Driver");
 String connectionURL="jdbc:"+args[0];
 String userName=args[1];
 String passWord=args[2];

 cdb = DriverManager.getConnection(connectionURL,userName,passWord);
 Statement stmt = cdb.createStatement();
 ResultSet rs = stmt
 .executeQuery("SELECT CONCAT('Hello from CockroachDB at',"
 + "CAST (NOW() as STRING)) AS hello");
 rs.next();
 System.out.println(rs.getString("hello"));

Working with Programming Languages | 77

https://cockroa.ch/3DHucID

1 Note that the URL is slightly different from the ones used for other languages. The Postgres JDBC driver does
not support embedding the username and password in the URL, so we need to pass them separately.

 } catch (Exception e) {
 e.printStackTrace();
 System.err.println(e.getClass().getName() + ": " + e.getMessage());
 System.exit(0);
 }
 }
}

If we want to connect to the CockroachDB Cloud Basic cluster we created earlier, we
issue the following command:1

$ java -m helloCRDB/helloCRDB.HelloCRDB
 postgresql://gcp-asia-southeast1.cockroachlabs.cloud:26257/defaultdb
 ?sslmode=verify-full&sslrootcert=/Users/guyharrison/CockroachDBCockroachDBKeys/
cc-ca.crt&options=--cluster=grumpy-orca-56 \
 guy xxxxxxxxxxxx

Hello from CockroachDB at 2024-05-05 15:39:07.667438+10:00

And here we connect to a local CockroachDB cluster in insecure mode:

$ java -m helloCRDB/helloCRDB.HelloCRDB postgresql://localhost:26257/
?sslmode=disable root ‘’

Hello from CockroachDB at 2024-05-05 15:38:56.691009+10:00

Connecting to CockroachDB from Python
Python is a widely used scripting language as well as the tool of choice for many
data scientists and data wranglers. In this example, we’ll use the psycopg python-
postgresql package to connect to CockroachDB.

To install the psycopg package, issue the following command:

$ pip3 install psycopg2

Collecting psycopg2
 Using cached psycopg2-2.8.6.tar.gz (383 kB)
Building wheels for collected packages: psycopg2
 Building wheel for psycopg2 (setup.py) ... done
 Created wheel for psycopg2: filename=psycopg2-2.8.6-cp39-...
 Stored in directory: /Users/guyharrison/Li...
Successfully built psycopg2
Installing collected packages: psycopg2
Successfully installed psycopg2-2.8.6

78 | Chapter 3: Getting Started

2 Note that because of limitations in the psycopg2 driver, we need to replace the final “=” in the URL with
“%3d.” Instead of cluster=grumpy-orca-56, we use cluster%3dgrumpy-orca-56.

Now the following short program will connect to CockroachDB using a URL pro‐
vided on the command line and issue a SELECT statement:

#!/usr/bin/env python3

import psycopg2
import sys

def main():

 if ((len(sys.argv)) !=2):
 sys.exit("Error:No URL provided on command line")
 uri=sys.argv[1]

 conn = psycopg2.connect(uri)
 with conn.cursor() as cur:
 cur.execute("""SELECT CONCAT('Hello from CockroachDB at ',
 CAST (NOW() as STRING))""")
 data=cur.fetchone()
 print("%s" % data[0])

main()

Here we connect to the CockroachDB Cloud Basic database we established earlier in
the chapter:2

$ python helloCockroachDB.py \
 'postgres://guy:xxxxxx@gcp-asia-
southeast1.cockroachlabs.cloud:26257/defaultdb?sslmode=verify-
full&sslrootcert=/Users/guyharrison/CockroachDBCockroachDBKeys/
cc-ca.crt&options=--cluster%3dgrumpy-orca-56'

Hello from CockroachDB at 2024-05-02 02:39:55.859734+00:00

And here we connect to a local CockroachDB cluster running in insecure mode:

$ python helloCockroachDB.py 'postgres://root@localhost:26257?sslmode=disable'
Hello from CockroachDB at 2024-05-02 02:33:00.755359+00:00

Connecting to CockroachDB from Go
The Go language is one of the fastest-growing programming languages, and it offers
high performance, modern programming paradigms, and a low footprint. Much of
the CockroachDB database platform is written in Go, so Go is a great choice for
CockroachDB development.

Working with Programming Languages | 79

In this example, we’re going to use the pgx PostgreSQL driver for Go to connect to
the CockroachDB Cloud Basic cluster we created earlier. First, we need to install the
driver:

$ go get github.com/jackc/pgx/v5

This short program connects to CockroachDB using the URL provided on the com‐
mand line and issues a SELECT statement:

package main

import (
"context"
"fmt"
"os"
"github.com/jackc/pgx/v5"

)

func main() {
uri := "postgresql://root@localhost:26257/bank?ssl=disabled"
conn, err := pgx.Connect(context.Background(), uri)
if err != nil {

fmt.Fprintf(os.Stderr,
"Unable to connect to database: %v\n", err)

os.Exit(1)
}
var text string
err = conn.QueryRow(context.Background(),

`SELECT CONCAT('Hello from CockroachDB at ',
 CAST (NOW() as STRING))`).Scan(&text)

if err != nil {
fmt.Fprintf(os.Stderr, "QueryRow failed: %v\n", err)
os.Exit(1)

}

fmt.Println(text)
}

We connect to a CockroachDB Cloud Basic cluster:

$ go run helloCockroachDB.go \
 "postgres://guy:xxxxxxx@gcp-asia-
southeast1.cockroachlabs.cloud:26257/defaultdb?sslmode=verify-
full&sslrootcert=$HOME/CockroachDBCockroachDBKeys/
cc-ca.crt&options=--cluster=grumpy-orca-56"

Hello from CockroachDB at 2024-05-02 02:24:13.930662+00:00

And then we run the program to connect to a local CockroachDB cluster in insecure
mode:

$ go run helloCockroach.go 'postgres://root@localhost:26257?sslmode=disable'
Hello from CockroachDB at 2024-05-02 02:21:59.179171+00:00

80 | Chapter 3: Getting Started

Summary
In this chapter, we’ve shown you how to install CockroachDB software on a local
computer, how to create a CockroachDB cluster in a variety of configurations,
and how to work with CockroachDB from the command line or a programming
language.

It’s easy to install CockroachDB software on a desktop and, in most cases, necessary if
you want to work with a CockroachDB server from the command line. You can also
install CockroachDB software using Docker or Kubernetes.

While a single-node test server can be a useful tool for learning CockroachDB, the
CockroachDB Cloud Basic plan offers a free 10 GiB server that provides backup and
security. You can also install CockroachDB in a Kubernetes cluster to experiment
with a full cluster in a local environment.

Because CockroachDB is PostgreSQL-compatible, you can use any Postgres-
compatible driver to connect to CockroachDB. We also provided simple examples
of connecting to CockroachDB using the PostgreSQL drivers for Java, Python, Go,
and Node.js.

In the next chapter, we’ll dive into SQL, covering the most common SQL statements
you’ll want to use when interacting with CockroachDB.

Summary | 81

CHAPTER 4

CockroachDB SQL

The language of CockroachDB is SQL. While there are some command-line utilities,
all interactions between an application and the database are mediated by SQL lan‐
guage commands.

SQL is a rich language with a long history—we touched upon some of that history
in Chapter 1. A full definition of all SQL language features would require a book in
its own right and would be almost instantly out of date because the SQL language
evolves with each release.

Therefore, this chapter aims to provide you with a broad overview of the SQL
language used in CockroachDB without attempting to be a complete reference.
We’ll take a task-oriented approach to SQL, covering the most common SQL lan‐
guage tasks with particular reference to unique features of the CockroachDB SQL
implementation.

As we described in Chapter 1, SQL is a declarative language. SQL statements repre‐
sent logical requests for queries and data manipulation operations without specifying
how the database should implement those requests.

A complete reference for the CockroachDB SQL language can be found in the
CockroachDB documentation set (https://cockroa.ch/3DC6MV0). A broader review of
the SQL language can be found in the O’Reilly book SQL in a Nutshell.

Some of the examples in this chapter use the MovR sample data set to illustrate
various SQL language features. We showed how to install sample data in Chapter 3.

SQL Language Compatibility
CockroachDB is broadly compatible with the PostgreSQL implementation of the
SQL:2016 standard. The SQL:2016 standard contains a number of independent

83

https://cockroa.ch/3DC6MV0
https://www.oreilly.com/library/view/sql-in-a/9781492088851

modules, and no major database implements all of the standards. However, the
PostgreSQL implementation of SQL is arguably as close to “standard” as exists in the
database community.

CockroachDB varies from PostgreSQL in a couple of areas (e.g., CockroachDB
does not support PostgreSQL XML functions). For a list of these differences, see
PostgreSQL Compatibility (https://cockroa.ch/4g98KPp).

Querying Data with SELECT
Although we need to create and populate tables before querying them, it’s logical to
start with the SELECT statement since many features of the SELECT statement appear
in other types of SQL—subqueries in UPDATEs, for instance—and for data scientists
and analysts, the SELECT statement is often the only SQL statement they ever need to
learn.

The SELECT statement (Figure 4-1) is the workhorse of relational queries and has a
complex and rich syntax. The CockroachDB SELECT statement implements the typical
features of the standard SELECT, with just a few CockroachDB-specific features.

Figure 4-1. SELECT statement

In the following sections, we’ll examine each of the major elements of the SELECT
statement as well as the functions and operators that can be included in it.

84 | Chapter 4: CockroachDB SQL

https://cockroa.ch/4g98KPp

The SELECT List
A simple SQL statement consists of nothing but a SELECT statement together with
scalar expressions (i.e., expressions that return a single value). For instance:

SELECT CONCAT('Hello from CockroachDB at ',
 CAST (NOW() as STRING)) as hello;

The SELECT list includes a comma-separated list of expressions that can contain com‐
binations of constants, functions, and operators. The CockroachDB SQL language
supports all the familiar SQL operators. A complete list of functions and operators
can be found in the CockroachDB documentation set (https://cockroa.ch/3uObifc).

The FROM Clause
The FROM clause is the primary method of attaching table data to the SELECT state‐
ment. In its most simple incarnation, all rows and columns from a table can be
fetched via a full table scan:

SELECT * FROM rides;

Table names may be aliased using the AS clause or simply by following the table name
with an alias. That alias can then be used anywhere in the query to refer to the table.
Column names can also be aliased. For instance, the following are all equivalent:

SELECT name FROM users;
SELECT u.name FROM users u;
SELECT users.name FROM users;
SELECT users.name AS user_name FROM users;
SELECT u.name FROM users AS u;

Joins
Joins allow the results from two or more tables to be merged based on some common
column values.

The INNER JOIN is the default JOIN operation. In this join, rows from one table are
joined to rows from another table based on some common (“key”) values. Rows
that have no match in both tables are not included in the results. For instance, the
following query links vehicle and ride information in the movr database:

SELECT v.id,v.ext,r.start_time, r.start_address
 FROM vehicles v
 INNER JOIN rides r
 ON (r.vehicle_id=v.id);

Note that a vehicle that had not been involved in a ride would not be included in the
result set.

Querying Data with SELECT | 85

https://cockroa.ch/3uObifc

1 Note that user_ride_counts is not defined in the default rides schema. It is defined as SELECT u.name,
COUNT(u.name) AS rides FROM "users" AS u JOIN "rides" AS r ON (u.id=r.rider_id) GROUP BY

u.name.

The ON clause specifies the conditions that join the two tables—in the previous query,
the columns vehicle_id in the rider table were matched with the id column in the
vehicles table. If the JOIN is on an identically named column in both tables, then the
USING clause provides a handy shortcut. Here we join users and user_ride_counts
using the common name column:1

SELECT *
 FROM users u
 JOIN user_ride_counts urc
 USING (name);

The OUTER JOIN allows rows to be included even if they have no match in the other
table. Rows that are not found in the OUTER JOIN table are represented by NULL
values. LEFT and RIGHT determine which table may have missing values. For instance,
the following query prints all the users in the users table, even if some are not
associated with a promo code:

SELECT u.name , upc.code
 FROM users u
 LEFT OUTER JOIN user_promo_codes upc
 ON (u.id=upc.user_id);

The RIGHT OUTER JOIN reverses the default (LEFT) OUTER JOIN. So this query is
identical to the previous query because the users table is now the “right” table in the
join:

SELECT DISTINCT u.name , upc.code
 FROM user_promo_codes upc
 RIGHT OUTER JOIN users u
 ON (u.id=upc.user_id);

Anti-Joins
It is often required to select all rows from a table that do not have a matching
row in some other result set. This is called an anti-join, and while there is no SQL
syntax for this concept, it is typically implemented using a subquery and the IN or
EXISTS clause. The following example illustrates an anti-join using the EXISTS and IN
operators.

Each example selects users who are not also employees:

SELECT *
 FROM users

86 | Chapter 4: CockroachDB SQL

 WHERE id NOT IN
 (SELECT id FROM employees);

This query returns the same results but using a correlated subquery (we’ll discuss
subqueries in more detail in an upcoming section):

SELECT *
 FROM users u
 WHERE NOT EXISTS
 (SELECT id
 FROM employees e
 WHERE e.id=u.id);

Cross Joins
CROSS JOIN indicates that every row in the left table should be joined to every row in
the right table. Usually this is a recipe for disaster, unless one of the tables has only
one row or is a laterally correlated subquery (see “Correlated Subquery” on page 89).

Set Operations
SQL implements a number of operations that deal directly with result sets. These
operations, collectively referred to as “set operations,” allow result sets to be concaten‐
ated, subtracted, or overlaid.

The most common of these operations is the UNION operator, which returns the
sum of two result sets. By default, duplicates in each result set are eliminated. By
contrast, the UNION ALL operation will return the sum of the two result sets, including
any duplicates. The following example returns a list of customers and employees.
Employees who are also customers will be listed only once:

SELECT name, address
 FROM customers
 UNION
SELECT name,address
 FROM employees;

INTERSECT returns those rows that are in both result sets. This query returns custom‐
ers who are also employees:

SELECT name, address
 FROM customers
 INTERSECT
SELECT name,address
 FROM employees;

EXCEPT returns rows in the first result set that are not present in the second. This
query returns customers who are not also employees:

SELECT name, address
 FROM customers

Querying Data with SELECT | 87

 EXCEPT
SELECT name,address
 FROM employees;

All set operations require that the component queries return the same number of
columns and that those columns are of a compatible data type.

Group Operations
Aggregate operations allow for summary information to be generated, typically upon
groupings of rows. Rows can be grouped using the GROUP BY operator. If this is done,
the select list must consist only of columns contained within the GROUP BY clause and
aggregate functions.

The most common aggregate functions are shown in Table 4-1.

Table 4-1. Aggregate functions

Function Description

AVG Calculate the average value for the group.

COUNT Return the number of rows in the group.

MAX Return the maximum value in the group.

MIN Return the minimum value in the group.

STDDEV Return the standard deviation for the group.

SUM Return the total of all values for the group.

The following example generates summary ride information for each city:

SELECT u.city,SUM(urc.rides),AVG(urc.rides),max(urc.rides)
 FROM users u
 JOIN user_ride_counts urc
 USING (name)
 GROUP BY u.city;

Subqueries
A subquery is a SELECT statement that occurs within another SQL statement. Such a
“nested” SELECT statement can be used in a wide variety of SQL contexts, including
SELECT, DELETE, UPDATE, and INSERT statements.

The following statement uses a subquery to count the number of rides that share the
maximum ride length:

SELECT COUNT(*) FROM rides
 WHERE (end_time-start_time)=
 (SELECT MAX(end_time-start_time) FROM rides);

88 | Chapter 4: CockroachDB SQL

Subqueries may also be used in the FROM clause wherever a table or view definition
could appear. This query generates a result that compares each ride with the average
ride duration for the city:

SELECT id, city,(end_time-start_time) ride_duration, avg_ride_duration
 FROM rides
 JOIN (SELECT city,
 AVG(end_time-start_time) avg_ride_duration

 FROM rides
 GROUP BY city)

 USING(city) ;

Correlated Subquery
A correlated subquery is one in which the subquery refers to values in the parent
query or operation. The subquery returns a potentially different result for each row in
the parent result set. We saw an example of a correlated subquery when performing
an “anti-join” earlier in the chapter.

SELECT *
 FROM users u
 WHERE NOT EXISTS
 (SELECT id
 FROM employees e
 WHERE e.id=u.id);

Subqueries can often be used to perform an operation that is functionally equivalent
to a join. In many cases, the query optimizer will transform these statements to joins
to streamline the optimization process.

Lateral Subquery
When a subquery is used in a join, the LATERAL keyword indicates that the subquery
may access columns generated in preceding FROM table expressions. For instance, in
the following query, the LATERAL keyword allows the subquery to access columns
from the users table:

 SELECT name, address, start_time
 FROM users CROSS JOIN
 LATERAL (SELECT *
 FROM rides
 WHERE rides.start_address = users.address) r;

This example is a bit contrived, and clearly, we could construct a simple JOIN that
performed this query more naturally. Where LATERAL joins really shine is in allowing
subqueries to access computed columns in other subqueries within a FROM clause.
Andy Woods’s CockroachDB blog post (https://cockroa.ch/3DFUpXW) describes a
more serious example of lateral subqueries.

Querying Data with SELECT | 89

https://cockroa.ch/3DFUpXW

The WHERE Clause
The WHERE clause is common to SELECT, UPDATE, and DELETE statements. It specifies
a set of logical conditions that must evaluate to true for all rows to be returned or
processed by the SQL statement concerned.

Common Table Expressions
SQL statements with a lot of subqueries can be hard to read and maintain, especially
if the same subquery is needed in multiple contexts within the query. For this reason,
SQL supports Common Table Expressions using the WITH clause. Figure 4-2 shows the
syntax of a Common Table Expression.

Figure 4-2. Common Table Expression

In its simplest form, a Common Table Expression is simply a named query block that
can be applied wherever a table expression can be used. For instance, here we use the
WITH clause to create a Common Table Expression, riderRevenue, then refer to it in
the FROM clause of the main query:

WITH riderRevenue AS (
 SELECT u.id, SUM(r.revenue) AS sumRevenue
 FROM rides r JOIN "users" u
 ON (r.rider_id=u.id)
 GROUP BY u.id)

SELECT * FROM "users" u2
 JOIN riderRevenue rr USING (id)
 ORDER BY sumrevenue DESC;

90 | Chapter 4: CockroachDB SQL

The RECURSIVE clause allows the Common Table Expression to refer to itself, poten‐
tially allowing for a query to return an arbitrarily high (or even infinite) set of results.
For instance, if the employees table contained a manager_id column that referred to
the manager’s row in the same table, then we could print a hierarchy of employees
and managers as follows:

WITH RECURSIVE employeeMgr AS (
 SELECT id,manager_id, name , NULL AS manager_name, 1 AS level
 FROM employees managers
 WHERE manager_id IS NULL
 UNION ALL
 SELECT subordinates.id,subordinates.manager_id,
 subordinates.name, managers.name ,managers.LEVEL+1
 FROM employeeMgr managers
 JOIN employees subordinates
 ON (subordinates.manager_id=managers.id)
)
SELECT * FROM employeeMgr;

The MATERIALIZED clause forces CockroachDB to store the results of the Common
Table Expression as a temporary table rather than reexecuting it on each occurrence.
This can be useful if the Common Table Expression is referenced multiple times in
the query.

ORDER BY
The ORDER BY clause allows query results to be returned in sorted order. Figure 4-3
shows the ORDER BY syntax. Note that sortby_index is expanded in Figure 4-4.

Figure 4-3. ORDER BY

In the simplest form, ORDER BY takes one or more column expressions or column
numbers from the SELECT list.

In this example, we sort by column numbers:

SELECT city,start_time, (end_time-start_time) duration
 FROM rides r
 ORDER BY 1,3 DESC;

Querying Data with SELECT | 91

And in this case, by column expressions:

SELECT city,start_time, (end_time-start_time) duration
 FROM rides r
 ORDER BY city,(end_time-start_time) DESC;

As shown in Figure 4-4, you can also order by an index.

Figure 4-4. SORT BY INDEX

In the following example, rows will be ordered by city and start_time, since those
are the columns specified in the index:

CREATE INDEX rides_start_time ON rides (city ,start_time);

SELECT city,start_time, (end_time-start_time) duration
 FROM rides
 ORDER BY INDEX rides@rides_start_time;

The use of ORDER BY INDEX guarantees that the index will be used to directly return
rows in sorted order, rather than having to perform a sort operation on the rows
after they are retrieved. See Chapter 8 for more advice on optimizing statements that
contain an ORDER BY.

Window Functions
Window functions are functions that operate over a subset—a “window” of the
complete set of the results. Figure 4-5 shows the syntax of a window function.

Figure 4-5. Window function syntax

92 | Chapter 4: CockroachDB SQL

PARTITION BY and ORDER BY create a sort of “virtual table” that the function works
with. For instance, this query lists the top 10 rides in terms of revenue, with the
percentage of the total revenue and city revenue displayed:

SELECT city, r.start_time ,revenue,
 revenue*100/SUM(revenue) OVER () AS pct_total_revenue,
 revenue*100/SUM(revenue) OVER (PARTITION BY city) AS pct_city_revenue
 FROM rides r
 ORDER BY 5 DESC
 LIMIT 10;

There are some aggregation functions that are specific to windowing functions.
RANK() ranks the existing row within the relevant window, and DENSE_RANK() does
the same while allowing no “missing” ranks. LEAD and LAG provide access to functions
in adjacent partitions.

For instance, this query returns the top 10 rides, with each ride’s overall rank and
rank within the city displayed:

SELECT city, r.start_time ,revenue,
 RANK() OVER
 (ORDER BY revenue DESC) AS total_revenue_rank,
 RANK() OVER
 (PARTITION BY city ORDER BY revenue DESC) AS city_revenue_rank
 FROM rides r
 ORDER BY revenue DESC
 LIMIT 10;

Other SELECT Clauses
The LIMIT clause limits the number of rows returned by a SELECT while the OFFSET
clause “jumps ahead” a certain number of rows. This can be handy to paginate
through a result set, though it is almost always more efficient to use a filter condition
to navigate to the next subset of results—otherwise, each request will need to reread
and discard an increasing number of rows.

CockroachDB Arrays
The ARRAY type allows a column to be defined as a one-dimensional array of ele‐
ments, each of which shares a common data type. We’ll talk about arrays in the
context of data modeling in the next chapter. Although they can be useful, strictly
speaking they are a violation of the relational model and should be used carefully.

An ARRAY variable is defined by adding [] or the word ARRAY to the data type of a
column. For instance:

CREATE TABLE arrayTable (arrayColumn STRING[]);
CREATE TABLE anotherTable (integerArray INT ARRAY);

Querying Data with SELECT | 93

The ARRAY function allows us to insert multiple items into the ARRAY:

INSERT INTO arrayTable VALUES (ARRAY['sky', 'road', 'car']);
SELECT * FROM arrayTable;

 arraycolumn

 {sky,road,car}

We can access an individual element of an array with the following familiar array
element notation:

SELECT arrayColumn[2] FROM arrayTable;

 arraycolumn

 road

The @> operator can be used to find arrays that contain one or more elements:

SELECT * FROM arrayTable WHERE arrayColumn @>ARRAY['road'];

 arraycolumn

 {sky,road,car}

We can add elements to an existing array using the array_append function and
remove elements using array_remove:

UPDATE arrayTable
 SET arrayColumn=array_append(arrayColumn,'cat')
 WHERE arrayColumn @>ARRAY['car']
 RETURNING arrayColumn;

 arraycolumn

 {sky,road,car,cat}

UPDATE arrayTable
 SET arrayColumn=array_remove(arrayColumn,'car')
 WHERE arrayColumn @>ARRAY['car']
 RETURNING arrayColumn;

 arraycolumn

 {sky,road,cat}

Finally, the unnest function transforms an array into a tabular result—one row for
each element of the array. This can be used to “join” the contents of an array with data
held in relational form elsewhere in the database. We show an example of this in the
next chapter:

SELECT unnest(arrayColumn)
 FROM arrayTable;

94 | Chapter 4: CockroachDB SQL

 unnest

 sky
 road
 cat

Working with JSON
The JSONB data type allows us to store JSON documents into a column, and
CockroachDB provides operators and functions to help us work with JSON.

For these examples, we’ve created a table with a primary key customerid and all data
in a JSONB column, jsondata. We can use the jsonb_pretty function to retrieve the
JSON in a nicely formatted manner:

 SELECT jsonb_pretty(jsondata)
 FROM customersjson WHERE customerid=1;

 jsonb_pretty
--
 {
 "Address": "1913 Hanoi Way",
 "City": "Sasebo",
 "Country": "Japan",
 "District": "Nagasaki",
 "FirstName": "MARY",
 "LastName": "Smith",
 "Phone": 886780309,
 "_id": "5a0518aa5a4e1c8bf9a53761",
 "dateOfBirth": "1982-02-20T13:00:00.000Z",
 "dob": "1982-02-20T13:00:00.000Z",
 "randValue": 0.47025846594884335,
 "views": [
 {
 "filmId": 611,
 "title": "MUSKETEERS WAIT",
 "viewDate": "2013-03-02T05:26:17.645Z"
 },
 {
 "filmId": 308,
 "title": "FERRIS MOTHER",
 "viewDate": "2015-07-05T20:06:58.891Z"
 },
 {
 "filmId": 159,
 "title": "CLOSER BANG",
 "viewDate": "2012-08-04T19:31:51.698Z"
 },
 /* Some data removed */
]
 }

Querying Data with SELECT | 95

Each JSON document contains some top-level attributes and a nested array of docu‐
ments that contains details of films that they have streamed.

We can reference specific JSON attributes in the SELECT clause using the -> operator:

 SELECT jsondata->'City' AS City
 FROM customersjson WHERE customerid=1;

 city

 "Sasebo"

The ->> operator is similar but returns the data formatted as text, not JSON.

If we want to search inside a JSONB column, we can use the @> operator:

SELECT COUNT(*) FROM customersjson
 WHERE jsondata @> '{"City": "London"}';

 count

 3

We can get the same result using the ->> operator:

SELECT COUNT(*) FROM customersjson
 WHERE jsondata->>'City' = 'London';

 count

 3

The ->> and @> operators can have different performance characteristics. In particu‐
lar, ->> might exploit an inverted index where @> would use a table scan.

We can interrogate the structure of the JSON document using the jsonb_each and
jsonb_object_keys functions. jsonb_each returns one row per attribute in the JSON
document, while jsonb_object_keys returns just the attribute keys. This is useful if
you don’t know what is stored inside the JSONB column.

jsonb_array_elements returns one row for each element in a JSON array. For
instance, here we expand out the views array for a specific customer, counting the
number of movies that they have seen:

96 | Chapter 4: CockroachDB SQL

SELECT COUNT(jsonb_array_elements(jsondata->'views'))
 FROM customersjson
 WHERE customerid =1;

 count

 37
(1 row)

Summary of SELECT
The SELECT statement is probably the most widely used statement in database pro‐
gramming and offers a wide range of functionality. Even after decades of working in
the field, the four of us don’t know every nuance of SELECT functionality. However,
here we’ve tried to provide you with the most important aspects of the language. For
more depth, view the CockroachDB documentation set (https://cockroa.ch/3v07BTY).

Although some database professionals use SELECT almost exclusively, the majority
will be creating and manipulating data as well. In the following sections, we’ll look at
the language features that support those activities.

Creating Tables and Indexes
In a relational database, data can be added only to predefined tables. These tables
are created by the CREATE TABLE statement. Indexes can be created to enforce unique
constraints or to provide a fast access path to the data. Indexes can be defined within
the CREATE TABLE statement or by a separate CREATE INDEX statement.

The structure of a database schema forms a critical constraint on database perfor‐
mance and also on the maintainability and utility of the database. We’ll discuss the
key considerations for database design in Chapter 5. For now, let’s create a few simple
tables.

We use CREATE TABLE to create a table within a database. Figure 4-6 provides a
simplified syntax for the CREATE TABLE statement.

Creating Tables and Indexes | 97

https://cockroa.ch/3v07BTY

Figure 4-6. CREATE TABLE statement

A simple CREATE TABLE is shown in the next example. It creates a table, mytable, with
a single column, mycolumn. The mycolumn column can store only integer values:

CREATE TABLE mytable
(
 mycolumn int
);

The CREATE TABLE statement must define the columns that occur within the table and
can optionally define indexes, column families, constraints, and partitions associated
with the table. For instance, the CREATE TABLE statement for the rides table in the
movr database would look something like this:

CREATE TABLE public.rides (
id UUID NOT NULL,
city VARCHAR NOT NULL,
vehicle_city VARCHAR NULL,
rider_id UUID NULL,
vehicle_id UUID NULL,
start_address VARCHAR NULL,
end_address VARCHAR NULL,
start_time TIMESTAMP NULL,
end_time TIMESTAMP NULL,

98 | Chapter 4: CockroachDB SQL

revenue DECIMAL(10,2) NULL,
CONSTRAINT "primary" PRIMARY KEY (city ASC, id ASC),
CONSTRAINT fk_city_ref_users
 FOREIGN KEY (city, rider_id)
 REFERENCES public.users(city, id),
CONSTRAINT fk_vehicle_city_ref_vehicles
 FOREIGN KEY (vehicle_city, vehicle_id)
 REFERENCES public.vehicles(city, id),
INDEX rides_auto_index_fk_city_ref_users
 (city ASC, rider_id ASC),
INDEX rides_auto_index_fk_vehicle_city_ref_vehicles

 (vehicle_city ASC, vehicle_id ASC),
CONSTRAINT check_vehicle_city_city

 CHECK (vehicle_city = city)
);

This CREATE TABLE statement specified additional columns, their nullability, primary
and foreign keys, indexes, and constraints upon table values.

The relevant clauses in Figure 4-6 are listed in Table 4-2.

Table 4-2. CREATE TABLE options

Option Description

column_def The definition of a column. This includes the column name, data type, and nullability. Constraints
specific to the column can also be included here, though it’s better practice to list all constraints
separately.

index_def Definition of an index to be created on the table. Same as CREATE INDEX but without the
leading CREATE verb.

table_constraint A constraint on the table, such as PRIMARY KEY, FOREIGN KEY, or CHECK. See “Constraints”
on page 103 for constraint syntax.

family_def Assigns columns to a column family. See Chapter 2 for more information about column families.

Let’s now look at each of these CREATE TABLE options.

Column Definitions
A column definition consists of a column name, data type, nullability status, default
value, and possibly column-level constraint definitions. At a minimum, the name and
data type must be specified. Figure 4-7 shows the syntax for a column definition.

Creating Tables and Indexes | 99

Figure 4-7. Column definition

100 | Chapter 4: CockroachDB SQL

Although constraints may be specified directly against column definitions, they may
also be independently listed below the column definitions. Many practitioners prefer
to list the constraints separately in this manner because it allows all constraints,
including multicolumn constraints, to be located together.

Computed Columns
CockroachDB allows tables to include computed columns that in some other databases
would require a view definition:

column_name AS expression [STORED|VIRTUAL]

A VIRTUAL computed column is evaluated whenever it is referenced. A STORED
expression is stored in the database when created and need not always be
recomputed.

For instance, this table definition has the firstName and lastName concatenated into
a fullName column:

CREATE TABLE people
 (
 id INT PRIMARY KEY,
 firstName VARCHAR NOT NULL,
 lastName VARCHAR NOT NULL,
 dateOfBirth DATE NOT NULL,
 fullName STRING AS (CONCAT(firstName,' ',lastName)) STORED,
 age int AS (now()-dateOfBirth) STORED
);

Computed columns cannot be context-dependent. That is, the computed value must
not change over time or be otherwise nondeterministic. For instance, the computed
column in the following example would not work since the age column would be
static rather than recalculated every time. While it might be nice to stop aging in real
life, we probably want the age column to increase as time goes on.

CREATE TABLE people
 (
 id INT PRIMARY KEY,
 firstName VARCHAR NOT NULL,
 lastName VARCHAR NOT NULL,
 dateOfBirth timestamp NOT NULL,
 fullName STRING AS (CONCAT(firstName,' ',lastName)) STORED,
 age int AS (now()-dateOfBirth) STORED
);

Data Types
The base CockroachDB data types (https://cockroa.ch/3LOXXu4) are shown in
Table 4-3.

Creating Tables and Indexes | 101

https://cockroa.ch/3LOXXu4

Table 4-3. CockroachDB data types

Type Description Example

ARRAY A one-dimensional, one-indexed, homogeneous array of any
nonarray data type.

{"sky","road","car"}

BIT A string of binary digits (bits). B'10010101'

BOOL A Boolean value. true

BYTES A string of binary characters. b'\141\061\142\062\143\063'

COLLATE The COLLATE feature lets you sort STRING values
according to language- and country-specific rules, known
as collations.

'a1b2c3' COLLATE en

DATE A date. DATE '2016-01-25'

DECIMAL An exact, fixed-point number. 1.2345

ENUM New in v20.2: a user-defined data type comprised of a set of
static values.

ENUM ('club', 'diamond',
'heart', 'spade')

FLOAT A 64-bit, inexact, floating-point number. 3.141592653589793

INET An IPv4 or IPv6 address. 192.168.0.1

INT A signed integer, up to 64 bits. 12345

INTERVAL A span of time. INTERVAL '2h30m30s'

JSONB JSON data. '{"first_name": "Lola",
"last_name": "Dog", "loca
tion": "NYC", "online" :
true, "friends" : 547}'

SERIAL A pseudotype that creates unique ascending numbers. 148591304110702593

STRING A string of Unicode characters. 'a1b2c3'

TIME
TIMETZ

TIME stores a time of day in UTC. TIMETZ converts TIME
values with a specified time zone offset from UTC.

TIME '01:23:45.123456'
TIMETZ
'01:23:45.123456-5:00'

TIMESTAMP
TIMESTAMPTZ

TIMESTAMP stores a date and time pairing in UTC. TIME
STAMPTZ converts TIMESTAMP values with a specified
time zone offset from UTC.

TIMESTAMP '2016-01-25
10:10:10'
TIMESTAMPTZ '2016-01-25
10:10:10-05:00'

TSQUERY A list of lexemes to be used in a full-text search. 'lazi' & 'dog'

TSVECTOR A list of lexemes with optional position information. 'dog':2 'lazi':1

UUID A 128-bit hexadecimal value. 7f9c24e8-3b12-4fef-91e0-
56a2d5a246ec

VECTOR A fixed-length array of floating-point numbers representing
points in an n-dimensional space.

[0.1259227, 0.0318873,
0.4660917]

102 | Chapter 4: CockroachDB SQL

Note that other data type names may be aliased against these CockroachDB base
types. For instance, the PostgreSQL types BIGINT and SMALLINT are aliased against the
CockroachDB type INT.

In CockroachDB, data types may be cast—or converted—by appending the data type
to an expression using “::”. For instance:

SELECT revenue::int FROM rides;

The CAST function can also be used to convert data types and is more broadly
compatible with other databases and SQL standards. For instance:

SELECT CAST(revenue AS int) FROM rides;

Primary Keys
As we know, a primary key uniquely defines a row within a table. In CockroachDB,
a primary key is mandatory because all tables are distributed across the cluster based
on the ranges of their primary key. If you don’t specify a primary key, a key will be
automatically generated for you.

It’s common practice in other databases to define an autogenerating primary key
using clauses such as AUTOINCREMENT. The generation of primary keys in distributed
databases is a significant issue because it’s the primary key that is used to distribute
data across nodes in the cluster. We’ll discuss the options for primary key generation
in the next chapter, but for now, we’ll simply note that you can generate randomized
primary KVs using the UUID data type with the gen_random_uuid() function as the
default value:

CREATE TABLE people (
 id UUID NOT NULL DEFAULT gen_random_uuid(),
 firstName VARCHAR NOT NULL,
 lastName VARCHAR NOT NULL,
 dateOfBirth DATE NOT NULL
);

This pattern is considered best practice to ensure even distribution of keys across the
cluster. Other options for autogenerating primary keys will be discussed in Chapter 5.

Constraints
The CONSTRAINT clause specifies conditions that must be satisfied by all rows within a
table. In some circumstances, the CONSTRAINT keyword may be omitted, for instance,
when defining a column constraint or specific constraint types such as PRIMARY KEY
or FOREIGN KEY. Figure 4-8 shows the general form of a constraint definition.

Creating Tables and Indexes | 103

Figure 4-8. CONSTRAINT statement

A UNIQUE constraint requires that all values for the column or column_list be unique.

PRIMARY KEY implements a set of columns that must be unique and which can also
be the subject of a FOREIGN KEY constraint in another table. Both PRIMARY KEY and
UNIQUE constraints require the creation of an implicit index. If desired, the physical
storage characteristics of the index can be specified in the USING clause. The options
of the USING INDEX clause have the same usages as in the CREATE INDEX statement.

NOT NULL indicates that the column in question may not be NULL. This option is
available for only column constraints, but the same effect can be obtained with a table
CHECK constraint.

CHECK defines an expression that must evaluate to true for every row in the table.
We’ll discuss best practices for creating constraints in Chapter 5.

Sensible use of constraints can help ensure data quality and can provide the database
with a certain degree of self-documentation. However, some constraints have signifi‐
cant performance implications; we’ll discuss these implications in Chapter 5.

Indexes
Indexes can be created by the CREATE INDEX statement, or an INDEX definition can be
included within the CREATE TABLE statement.

104 | Chapter 4: CockroachDB SQL

We talked a lot about indexes in Chapter 2, and we’ll keep discussing indexes in the
schema design and performance tuning chapters (Chapters 5 and 8, respectively).
Effective indexing is one of the most important success factors for a performance
CockroachDB implementation.

Figure 4-9 illustrates a simplistic syntax for the CockroachDB CREATE INDEX

statement.

Figure 4-9. CREATE INDEX statement

We looked at the internals of CockroachDB indexes in Chapter 2. From a perfor‐
mance point of view, CockroachDB indexes behave much as indexes in other data‐
bases—providing a fast access method for locating rows with a particular set of
nonprimary KVs. For instance, if we simply want to locate a row with a specific name
and date of birth, we might create the following multicolumn index:

CREATE INDEX people_namedob_ix ON people
 (lastName,firstName,dateOfBirth);

Creating Tables and Indexes | 105

If we wanted to further ensure that no two rows could have the same value for name
and date of birth, we might create a unique index:

CREATE UNIQUE INDEX people_namedob_ix ON people
 (lastName,firstName,dateOfBirth);

The STORING clause allows us to store additional data in the index, which can allow
us to satisfy queries using the index alone. For instance, this index can satisfy queries
that retrieve phone numbers for a given name and date of birth:

CREATE UNIQUE INDEX people_namedob_ix ON people
 (lastName,firstName,dateOfBirth) STORING (phoneNumber);

Inverted indexes
An inverted index can be used to index the elements within an array or the attributes
within a JSON document. We looked at the internals of inverted indexes in Chapter 2.
Inverted indexes can also be used for spatial data.

For example, suppose our people table used a JSON document to store the attributes
for a person:

CREATE TABLE people
 (id UUID NOT NULL DEFAULT gen_random_uuid(),
 personData JSONB);

INSERT INTO people (personData)
VALUES('{

 "firstName":"Guy",
 "lastName":"Harrison",
 "dob":"21-Jun-1960",
 "phone":"0419533988",
 "photo":"eyJhbGciOiJIUzI1NiIsI..."
 }');

We might create an inverted index as follows:

CREATE INVERTED INDEX people_inv_idx ON
people(personData);

Which would support queries into the JSON document such as this:

SELECT *
FROM people
WHERE personData @> '{"phone":"0419533988"}';

Bear in mind that inverted indexes index every attribute in the JSON document, not
just those that you want to search on. This potentially results in a very large index.
Therefore, you might find it more useful to create a calculated column on the JSON
attribute and then index on that computed column:

106 | Chapter 4: CockroachDB SQL

ALTER TABLE people ADD phone STRING AS (personData->>'phone') VIRTUAL;

CREATE INDEX people_phone_idx ON people(phone);

Hash-sharded indexes
If you’re working with a table that must be indexed on sequential keys, you should
use hash-sharded indexes. Hash-sharded indexes distribute sequential traffic uni‐
formly across ranges, eliminating single-range hotspots and improving write perfor‐
mance on sequentially keyed indexes at a small cost to read performance:

CREATE TABLE people
(id INT PRIMARY KEY,
 firstName VARCHAR NOT NULL,
 lastName VARCHAR NOT NULL,
 dateOfBirth timestamp NOT NULL,
 phoneNumber VARCHAR NOT NULL,
 serialNo SERIAL ,
 INDEX serialNo_idx (serialNo) USING HASH WITH BUCKET_COUNT=4);

We’ll discuss hash-sharded indexes—as well as other more advanced indexing top‐
ics—in more detail in the next section.

Vectors
CockroachDB’s VECTOR data type is compatible with the popular pgvector exten‐
sion (https://cockroa.ch/423BoNv) for PostgreSQL and it allows you to embed
CockroachDB as part of your large language model (LLM) or machine learning (ML)
infrastructure.

Vectors enable efficient semantic similarity searches by representing features in an
n-dimensional space, where proximity indicates conceptual relatedness. Let’s look at
some concrete examples to disambiguate things.

First, we’ll create a table containing a VECTOR column. Let’s assume we’re an online
retailer and want to provide product recommendations based on customer purchases:

CREATE TABLE customer (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 email STRING NOT NULL UNIQUE,
 vector VECTOR(7)
);

The vector’s dimensionality is defined by the number that’s used when creating it. In
Table 4-4, we’ve configured this vector to store seven dimensions. At first, this may
seem arbitrary, but there’s a reason for this number.

Creating Tables and Indexes | 107

https://cockroa.ch/423BoNv
https://cockroa.ch/423BoNv

To represent a customer in a numerical format that can be used for distance search‐
ing, we need to store information about them that will be useful for distance
searching in the vector.

Table 4-4. The seven features of our vector

Property Example Encoding type
Age 0.3780123 Min/max (a value between 0 and 1 representing where a customer’s age falls between a

minimum and maximum age range)

Gender 0, 0, 0, 1 One-hot (there is no ordinal relationship between genders, so one-hot encoding allows for
genders to be encoded as unique floating-point arrays)

Location 0.0188633,
0.1944628

Min/max (similar to age but with a value for both latitude and longitude)

Let’s insert some data into the table. We’ll insert three customers, with vector val‐
ues that might characterize the a@example.com customer as being, for example, a
35-year-old male living close to London:

INSERT INTO customer (email, vector) VALUES
 ('a@example.com', '[0.1259227, 0, 0, 0, 1, 0.0318873, 0.4660917]'),
 ('b@example.com', '[0.2331882, 0, 0, 0, 1, 0.0345919, 0.3901348]'),
 ('c@example.com', '[0.8177326, 0, 0, 1, 0, 0.7825610, 0.6627843]');

Now we’ll run a distance query to return customers that are closely related to the
a@example.com customer:

SELECT
 email,
 vector <-> '[0.1259227, 0, 0, 0, 1, 0.0318873, 0.4660917]' AS distance
FROM customer
ORDER BY distance;

 a@example.com | 0
 b@example.com | 0.13146349255472864
 c@example.com | 1.7552207999159306

The lower the score, the more closely a customer’s vector column matches the vector
being tested. Hence, customer a@example.com (whose vector we’re using for the
comparison) scores 0; the closest possible distance. The b@example.com customer
also has a low distance score, meaning their vector features are close to those being
tested; perhaps the products they like might also be relevant to a@example.com?

108 | Chapter 4: CockroachDB SQL

Having support for vectors also means that CockroachDB can be used as a retrieval-
augmented generation (RAG) backend. This allows your existing CockroachDB data‐
sets to augment the output of LLMs, training the model and extracting more value
from your data. See CockroachDB for AI/ML: LLMs and RAG (https://cockroa.ch/
4ib55Sj) for a demo.

CREATE TABLE AS SELECT
The AS SELECT clause of CREATE TABLE allows us to create a new table that has the
data and attributes of a SQL SELECT statement. Columns, constraints, and indexes can
be specified for an existing table but must align with the data types and number of
columns returned by the SELECT statement. For instance, here we create a table based
on a JOIN and aggregate of two tables in the movr database:

CREATE TABLE user_ride_counts AS
SELECT u.name, COUNT(u.name) AS rides
 FROM "users" AS u JOIN "rides" AS r
 ON (u.id=r.rider_id)
 GROUP BY u.name;

Note that while CREATE TABLE AS SELECT can be used to create summary tables and
the like, CREATE MATERIALIZED VIEW offers a more functional alternative.

Altering Tables
The ALTER TABLE statement allows table columns or constraints to be added, modi‐
fied, renamed, or removed, as well as allowing for constraint validation and partition‐
ing. Figure 4-10 shows the syntax.

Altering table structures online is not something to be undertaken lightly, although
CockroachDB provides highly advanced mechanisms for propagating such changes
(https://cockroa.ch/3J1A6Wh) without impacting availability and with minimal
impact on performance. We’ll discuss the procedures for online schema changes in
later chapters.

The synopsis for the ALTER TABLE statement is large, so Figure 4-10 shows a con‐
densed representation that lists the available commands. For the complete synopsis,
see the ALTER TABLE documentation (https://cockroa.ch/4f1pvud).

Creating Tables and Indexes | 109

https://cockroa.ch/4ib55Sj
https://cockroa.ch/3J1A6Wh
https://cockroa.ch/4f1pvud

Figure 4-10. ALTER TABLE statement

Dropping Tables
Tables can be dropped using the DROP TABLE statement. Figure 4-11 shows the syntax.

Figure 4-11. DROP TABLE statement

More than one table can be removed with a single DROP TABLE statement. The
CASCADE keyword causes dependent objects such as views or foreign key constraints
to be dropped as well. RESTRICT—the default—has the opposite effect; if there are any
dependent objects, then the table will not be dropped.

DROP CASCADE and Foreign Keys
DROP TABLE…CASCADE will drop any foreign key constraints that reference the table
but will not drop the tables or rows that contain those foreign keys. The end result
will be “dangling” references in these tables.

Because of this incompleteness, and because it can be hard to be certain exactly what
CASCADE will do, it’s usually better to manually remove all dependencies on a table
before dropping it.

110 | Chapter 4: CockroachDB SQL

Views
A standard view is a query definition stored in the database that defines a virtual
table. This virtual table can be referenced the same way as a regular table. Common
Table Expressions can be thought of as a way of creating a temporary view for a single
SQL statement. If you had a Common Table Expression that you wanted to share
among SQL statements, then a view would be a logical solution.

A materialized view stores the results of the view definition in the database so that the
view need not be reexecuted whenever encountered. This improves performance but
may result in stale results. If you think of a view as a stored query, then a materialized
view can be thought of as a stored result.

Figure 4-12 shows the syntax of the CREATE VIEW statement.

Figure 4-12. CREATE VIEW statement

The REFRESH MATERIALIZED VIEW statement can be used to refresh the data underly‐
ing a materialized view.

Functions
User-defined functions (UDFs) are named-functions within a database that can be
invoked from SELECT, FROM, and WHERE clauses. They take zero or more arguments,
return a value, and can be expressed in either SQL or PL/pgSQL.

Figure 4-13 shows the syntax of the CREATE FUNCTION statement.

Creating Tables and Indexes | 111

Figure 4-13. CREATE FUNCTION statement

In the following example, a function is created that takes zero arguments and returns
an integer. Note that because the function does not mutate data and is guaranteed to
return the same response on every invocation, we can decorate it with the IMMUTABLE
and LEAKPROOF annotations:

CREATE FUNCTION add(a INT, b INT) RETURNS INT IMMUTABLE LEAKPROOF LANGUAGE SQL
AS 'SELECT $1 + $2';

The function is called with a SELECT statement as follows:

SELECT easy_as();
-- Returns 123

112 | Chapter 4: CockroachDB SQL

SELECT easy_as() * 2;
-- Returns 246

A function’s volatility indicates whether you should expect side effects when calling it.
The previous function simply returned an integer with zero side effects, allowing the
cost-based optimizer to inline the function and improve its performance.

The following function is a little more involved and makes use of arguments and
the PL/pgSQL language. Notice that the IMMUTABLE and LEAKPROOF annotations are
no longer present, making this function volatile. Given the same arguments, this
function may return different data between calls (e.g., products are added, edited, or
removed):

CREATE OR REPLACE FUNCTION products_in_range(lo DECIMAL, hi DECIMAL)
RETURNS JSONB AS $$
DECLARE
 result JSONB;
BEGIN
 SELECT jsonb_agg(jsonb_build_object(
 'name', name,
 'price', price
))
 INTO result
 FROM product
 WHERE price BETWEEN lo AND hi;

 RETURN COALESCE(result, '[]'::JSONB);
END;
$$ LANGUAGE plpgsql;

Let’s create and populate a table to show how this function works:

CREATE TABLE product (
 "id" UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 "name" STRING NOT NULL,
 "price" DECIMAL NOT NULL
);

INSERT INTO product ("name", "price") VALUES
 ('a', 1.99),
 ('b', 2.99),
 ('c', 4.99),
 ('d', 8.99);

Calling the function with different values for the low and high price arguments yields
the following results:

SELECT products_in_range(2, 5);
-- Returns [{"name": "b", "price": 2.99}, {"name": "c", "price": 4.99}]

SELECT products_in_range(10, 100);
-- Returns []

Creating Tables and Indexes | 113

Procedures
Stored procedures are similar to functions in that they can accept zero or more
arguments but they don’t return a value, don’t accept volatility annotations, and are
invoked using CALL instead of SELECT. They’re useful when you wish to implement
complex logic within the database itself, rather than implementing that logic within
your application.

Figure 4-14 shows the syntax of the CREATE PROCEDURE statement.

Figure 4-14. CREATE PROCEDURE statement

In the following example, a procedure is created that updates the prices in the
product table by applying the amount specified in a new “tax” column. It will update
the table in batches until all of the product prices have been updated, at which point
the procedure completes.

First, we’ll update the product table to add the new “tax” column:

ALTER TABLE product ADD tax DECIMAL NOT NULL DEFAULT 20;

Next, we’ll create the procedure itself (you wouldn’t want to update product prices
like this in the real world; this procedure is just for demonstration purposes):

CREATE OR REPLACE PROCEDURE apply_tax(new_tax DECIMAL, batch_size INT DEFAULT 1)
LANGUAGE plpgsql AS $$
DECLARE
 updated_ids UUID;

114 | Chapter 4: CockroachDB SQL

BEGIN
 LOOP
 UPDATE product
 SET
 price = ROUND(price / (1 + tax / 100) * (1 + new_tax / 100), 2),
 tax = new_tax
 WHERE tax != new_tax
 LIMIT batch_size
 RETURNING id INTO updated_ids;

 EXIT WHEN updated_ids IS NULL;
 END LOOP;
END;
$$;

Finally, we’ll call the procedure twice, once to increase the tax amount to 30%, then
again to reduce it to 20%:

CALL apply_tax(30, 1000);
SELECT "name", "price", "tax" FROM product ORDER BY name;

 name | price | tax
-------+-------+------
 a | 2.16 | 30
 b | 3.24 | 30
 c | 5.41 | 30
 d | 9.74 | 30

CALL apply_tax(20, 1000);
SELECT "name", "price", "tax" FROM product ORDER BY name;

 name | price | tax
-------+-------+------
 a | 1.99 | 20
 b | 2.99 | 20
 c | 4.99 | 20
 d | 8.99 | 20

Inserting Data
We can load data into a new table using the INSERT statement inside a program
or from the command-line shell, with the CREATE TABLE AS SELECT statement
discussed earlier, or by loading external data using the IMPORT statement. There are
also non-SQL utilities that insert data—we’ll look at these in Chapter 7.

The venerable INSERT statement adds data to an existing table. Figure 4-15 illustrates
a simplified syntax for the INSERT statement.

Inserting Data | 115

Figure 4-15. INSERT statement

INSERT takes either a set of values or a SELECT statement. For instance, in the follow‐
ing example, we insert a single row into the people table:

INSERT INTO people (firstName, lastName, dateOfBirth)
VALUES ('Guy', 'Harrison', '21-JUN-1960');

The VALUES clause of the INSERT statement can accept multiple values, resulting in
multiple rows being inserted in a single execution:

INSERT INTO people (firstName, lastName, dateOfBirth)
VALUES ('Guy', 'Harrison', '21-JUN-1960'),
 ('Michael', 'Harrison', '19-APR-1994'),
 ('Oriana', 'Harrison', '18-JUN-2020');

There are alternative ways to insert batches in the various program language drivers,
and we’ll show some examples in Chapter 7.

A SELECT statement can be specified as the source of the inserted data:

INSERT INTO people (firstName, lastName, dateOfBirth)
SELECT firstName, lastName, dateOfBirth
 FROM peopleStagingData;

116 | Chapter 4: CockroachDB SQL

The RETURNING clause allows the data inserted to be returned to the user. The data
returned will include not just the variables that were inserted but any autogenerated
data. For instance, in this case, we INSERT data without specifying an ID value and
have the ID values that were created returned to us:

INSERT INTO people (firstName, lastName, dateOfBirth)
VALUES ('Guy', 'Harrison', '21-JUN-1960'),
 ('Michael', 'Harrison', '19-APR-1994'),
 ('Oriana', 'Harrison', '18-JUN-2020')
 RETURNING id;

The ON CONFLICT clause allows you to control what happens if an INSERT violates a
uniqueness constraint. Figure 4-16 shows the syntax.

Figure 4-16. ON CONFLICT clause

Without an ON CONFLICT clause, a uniqueness constraint violation will cause the
entire INSERT statement to abort. DO NOTHING allows the INSERT statement as a whole
to succeed but ignores any inserts that violate the uniqueness clause. The DO UPDATE
clause allows you to specify an UPDATE statement that executes instead of the INSERT.
The DO UPDATE functionality is similar in functionality to the UPSERT statement
discussed later in this chapter.

Inserting Data | 117

UPDATE
The UPDATE statement changes existing data in a table. Figure 4-17 shows a simplified
syntax for the UPDATE statement.

Figure 4-17. UPDATE statement

118 | Chapter 4: CockroachDB SQL

An UPDATE statement can specify static values as in the following example:

UPDATE users
 SET address = '201 E Randolph St',
 city='amsterdam'
 WHERE name='Maria Weber';

Alternatively, the values may be an expression referencing existing values:

UPDATE user_promo_codes
 SET usage_count=usage_count+1
 WHERE user_id='297fcb80-b67a-4c8b-bf9f-72c404f97fe8';

Or the UPDATE can use a subquery to obtain the values:

UPDATE rides SET (revenue, start_address) =
 (SELECT revenue, end_address FROM rides
 WHERE id = '94fdf3b6-45a1-4800-8000-000000000123')
 WHERE id = '851eb851-eb85-4000-8000-000000000104';

The RETURNING clause can be used to view the modified columns. This is particularly
useful if a column is being updated by a function and we want to return the modified
value to the application:

UPDATE user_promo_codes
 SET usage_count=usage_count+1
 WHERE user_id='297fcb80-b67a-4c8b-bf9f-72c404f97fe8'
 RETURNING (usage_count);

UPSERT
UPSERT can insert new data and update existing data in a table in a single operation.
If the input data does not violate any uniqueness constraints, it is inserted. If an input
matches an existing primary key, then the values of that row are updated.

In CockroachDB, the ON CONFLICT clause of INSERT provides a similar—though more
flexible—mechanism. When this flexibility is not needed, UPSERT is likely to be faster
than a similar INSERT...ON CONFLICT DO UPDATE statement.

Figure 4-18 shows the syntax of the UPSERT statement.

UPSERT | 119

Figure 4-18. UPSERT statement

The UPSERT compares the primary KV of each row provided. If the primary key is not
found in the existing table, then a new row is created. Otherwise, the existing row is
updated with the new values provided.

The RETURNING clause can be used to return a list of updated or inserted rows.

In this example, the primary key of user_promo_codes is (city, user_id, code). If
a user already has an entry for that combination in the table, then that row is updated
with a user_count of 0. Otherwise, a new row with those values is created:

UPSERT INTO user_promo_codes
 (user_id,city,code,timestamp,usage_count)
SELECT id,city,'NewPromo',now(),0
 FROM "users";

DELETE
DELETE allows data to be removed from a table. Figure 4-19 shows a simplified syntax
for the DELETE statement.

120 | Chapter 4: CockroachDB SQL

Figure 4-19. DELETE statement

Most of the time, a DELETE statement accepts a WHERE clause and not much else. For
instance, here we delete a single row in the people table:

DELETE FROM people
 WHERE firstName='Guy'
 AND lastName='Harrison';

The RETURNING clause can return details of the rows that were removed. For instance:

DELETE FROM user_promo_codes
 WHERE code='NewPromo'
RETURNING(user_id);

You can also include an ORDER BY and LIMIT clause to perform batch deletes in
an incremental fashion. For instance, you can construct a DELETE statement to
remove the oldest 1,000 rows. See the CockroachDB documentation (https://cock
roa.ch/3x4LnTg) for more information.

DELETE | 121

https://cockroa.ch/3x4LnTg

TRUNCATE
TRUNCATE provides a quick mechanism for removing all rows from a table. Internally,
it is implemented as a DROP TABLE followed by a CREATE TABLE. TRUNCATE is not
transactional—you cannot ROLLBACK a TRUNCATE.

IMPORT INTO
The IMPORT INTO statement imports the following types of data into an existing
CockroachDB table:

• Avro•
• Comma-separated values (CSV)/tab-separated values (TSV)•

The files to be imported should exist either in a cloud storage bucket (Google Cloud
Storage, Amazon S3, or Azure Blob storage), at an HTTP address, or on the local
filesystem (“nodelocal”).

We’ll discuss the various options for loading data into CockroachDB in Chapter 7.
However, for now, let’s create a new table customers from a CSV file:

IMPORT INTO TABLE customers (
 id INT PRIMARY KEY,
 name STRING,
 INDEX name_idx (name)
);
CSV DATA ('nodelocal://1/customers.csv');

 job_id | status | fra | rows | index_entries | bytes
---------------------+-----------+-----+------+---------------+--------
 659162639684534273 | succeeded | 1 | 1 | 1 | 47
(1 row)

Time: 934ms total (execution 933ms / network 1ms)

For a single-node demo cluster, the nodelocal location will be somewhat depen‐
dent on your installation but will often be in an extern directory beneath the
CockroachDB installation directory.

Transactional Statements
We talked a lot about CockroachDB transactions in Chapter 2, so review that chapter
if you need a refresher on how CockroachDB transactions work. From the SQL lan‐
guage point of view, CockroachDB supports the standard SQL transactional control
statements.

122 | Chapter 4: CockroachDB SQL

BEGIN Transaction
The BEGIN statement commences a transaction and sets its properties. Figure 4-20
shows the syntax.

PRIORITY sets the transaction priority. In the event of a conflict, HIGH priority transac‐
tions are less likely to be retried.

READ ONLY specifies that the transaction is read-only and will not modify data.

Figure 4-20. BEGIN transaction

AS OF SYSTEM TIME allows a READ ONLY transaction to view data from a snapshot of
database history. We’ll come back to this in a few pages.

Transactional Statements | 123

SAVEPOINT
SAVEPOINT creates a named rollback point that can be used as the target of a ROLLBACK
statement. This allows a portion of a transaction to be discarded without discarding
all of the transaction’s work. See the ROLLBACK section for more details.

COMMIT
The COMMIT statement commits the current transactions, making changes permanent.

Note that some transactions may require client-side intervention to handle retry
scenarios. These patterns will be explored in Chapter 6.

ROLLBACK
ROLLBACK aborts the current transaction. Optionally, we can ROLLBACK to a savepoint,
which rolls back only the statements issued after the SAVEPOINT.

For instance, in the following example, the insert of the misspelled number tree is
rolled back and corrected without abandoning the transaction as a whole:

BEGIN ;

INSERT INTO numbers VALUES(1,'one');
INSERT INTO numbers VALUES(2,'two');
SAVEPOINT two;

INSERT INTO numbers VALUES(3,'tree');
ROLLBACK TO SAVEPOINT two;

INSERT INTO numbers VALUES(3,'three');
COMMIT;

SELECT FOR UPDATE
The FOR UPDATE clause of a SELECT statement locks the rows returned by a query,
ensuring that they cannot be modified by another transaction between the time they
are read and when the transaction ends. This is typically used to implement the
pessimistic locking pattern that we’ll discuss in Chapter 6.

A FOR UPDATE query should be executed within a transaction. Otherwise, the locks
are released on completion of the SELECT statement.

A FOR UPDATE issued within a transaction will, by default, block other FOR UPDATE
statements on the same rows or other transactions that seek to update those rows
from completing until a COMMIT or ROLLBACK is issued. However, if a higher-priority
transaction attempts to update the rows or attempts to issue a FOR UPDATE, then the
lower-priority transaction will be aborted and will need to retry.

124 | Chapter 4: CockroachDB SQL

We’ll discuss the mechanics of transaction retries in Chapter 6.

Figure 4-21 illustrates two FOR UPDATE statements executing concurrently. The first
FOR UPDATE holds locks on the affected rows, preventing the second session from
obtaining those locks until the first session completes its transaction.

Figure 4-21. FOR UPDATE clause behavior

SELECT FOR SHARE
The FOR SHARE clause of a SELECT statement obtains a shared lock on the rows
returned by a query, preventing writes and other exclusive locking reads from obtain‐
ing a lock until the transaction ends. If a row is locked by multiple shared locks, none
of the lock holders will be able to write to the row.

A FOR SHARE query should be used when running in READ COMMITTED isolation,
where you need up-to-date data but don’t plan on making updates to that data after
reading it.

A FOR SHARE issued within a transaction will not block other FOR SHARE statements
on the same rows but will block other transactions that seek to update those rows
from completing until a COMMIT or ROLLBACK is issued. However, if a higher-priority
transaction attempts to update the rows, then lower-priority transactions will be
aborted and will need to retry.

We’ll discuss the mechanics of transaction retries in Chapter 6.

Figure 4-22 illustrates two FOR SHARE statements executing concurrently. The first
FOR SHARE creates a shared lock on the affected row, allowing the second session to

Transactional Statements | 125

obtain a shared lock but preventing it from obtaining an exclusive lock until the first
session completes its transaction.

Figure 4-22. FOR SHARE clause behavior

AS OF SYSTEM TIME
The AS OF SYSTEM TIME clause can be applied to SELECT and BEGIN TRANSACTION
statements as well as in BACKUP and RESTORE operations. AS OF SYSTEM TIME specifies
that a SELECT statement or all the statements in a READ ONLY transaction should
execute on a snapshot of the database at that system time. These snapshots are made
available by the MVCC architecture described in Chapter 2.

The time can be specified as an offset or an absolute timestamp, as in the following
two examples:

SELECT * FROM rides r
 AS OF SYSTEM TIME '-1d';

 SELECT * FROM rides r
 AS OF SYSTEM TIME '2024-5-22 18:02:52.0+00:00';

The time specified cannot be older in seconds than the replication zone configuration
parameter gc.ttlseconds, which controls the maximum age of MVCC snapshots.

It is also possible to specify bounded stale reads using the with_max_staleness
argument:

126 | Chapter 4: CockroachDB SQL

SELECT * FROM rides r
 AS OF SYSTEM TIME with_max_staleness('10s')
 WHERE city='amsterdam'
 AND id='aaaae297-396d-4800-8000-0000000208d6';

Bounded stale reads can be used to optimize performance in distributed deployments
by allowing CockroachDB to satisfy the read from local replicas that may contain
slightly stale data. We’ll return to bounded stale reads in Chapter 11.

Other Data Definition Language Targets
So far, we’ve looked at SQL to create, alter, and manipulate data in tables and indexes.
These objects represent the core of database functionality in CockroachDB, as in
other SQL databases. However, the CockroachDB data definition language (DDL)
provides support for a large variety of other, less frequently utilized objects. A full
reference for all these objects would take more space than we have available here—
see the CockroachDB documentation (https://cockroa.ch/3DC6MV0) for a complete
list of CockroachDB SQL. Table 4-5 lists some of the other objects that can be
manipulated in CREATE, ALTER, and DROP statements.

Table 4-5. Other CockroachDB schema objects

Object Description

Database A database is a namespace within a CockroachDB cluster containing schemas, tables, indexes, and other
objects. Databases are typically used to separate objects that have distinct application responsibilities or
security policies.

Schema A schema is a collection of tables and indexes that belong to the same relational model. In most
databases, tables are created in the PUBLIC schema by default.

Sequence Sequences are often used to create primary KVs; however, in CockroachDB there are often better
alternatives. See Chapter 5 for more guidance on primary key generation.

Role A role is used to group database and schema privileges, which can then be granted to users as a unit. See
Chapter 12 for more details on CockroachDB security practices.

Type In CockroachDB, a type is an enumerated set of values that can be applied to a column in a CREATE or
ALTER TABLE statement.

User A user is an account that can be used to log in to the database and can be assigned specific privileges. See
Chapter 12 for more details on CockroachDB security practices.

Statistics Statistics consist of information about the data within a specified table that the SQL optimizer uses to
work out the best possible execution plan for a SQL statement. See Chapter 8 for more information on
query tuning.

changefeed A changefeed streams row-level changes for nominated tables to a client program. See Chapter 7 for
more information on changefeed implementation.

Schedule A schedule controls the periodic execution of backups. See Chapter 11 for guidance on backup policies.

Function A user-defined function.

Stored
Procedure

A user-defined stored procedure.

Other Data Definition Language Targets | 127

https://cockroa.ch/3DC6MV0

Administrative Commands
CockroachDB supports commands to maintain authentication of users and their
authority to perform database operations. It also has a job scheduler that can be
used to schedule backup and restore operations as well as scheduled schema changes.
Other commands support the maintenance of the cluster topology.

These commands are generally tightly coupled with specific administrative opera‐
tions, which we’ll discuss in subsequent chapters, so we’ll refrain from defining them
in detail here. You can always see the definitions for them in the CockroachDB docu‐
mentation (https://cockroa.ch/3DC6MV0). Table 4-6 summarizes the most significant
of these commands.

Table 4-6. CockroachDB administrative commands

Command Description

CANCEL JOB Cancel long-running jobs such as backups, schema changes, or statistics collections.

CANCEL QUERY Cancel a currently running query.

CANCEL SESSION Cancel and disconnect a currently connected session.

CONFIGURE ZONE CONFIGURE ZONE can be used to modify replication zones for tables, databases, ranges,
or partitions. See Chapter 10 for more information on zone configuration.

SET CLUSTER SETTING Change a cluster configuration parameter.

EXPLAIN Show an execution plan for a SQL statement. We’ll look at EXPLAIN in detail in Chapter 8.

EXPORT Dump SQL output to CSV files.

SHOW/CANCEL/PAUSE JOBS Manage background jobs—imports, backups, schema changes, etc.—in the database.

SET LOCALITY Change the locality of a table in a multiregion database. See Chapter 10 for more
information.

SET TRACING Enable tracing for a session. We’ll discuss this in Chapter 8.

SHOW RANGES Show how a table, index, or database is segmented into ranges. See Chapter 2 for a
discussion on how CockroachDB splits data into ranges.

SPLIT AT Force a range split at the specified row in a table or index.

BACKUP Create a consistent backup for a table or database. See Chapter 11 for guidance on backups
and high availability.

SHOW STATISTICS Show optimizer statistics for a table.

SHOW TRACE FOR SESSION Show tracing information for a session as created by the SET TRACING command.

SHOW TRANSACTIONS Show currently running transactions.

SHOW SESSION Show sessions on the local node or across the cluster.

128 | Chapter 4: CockroachDB SQL

https://cockroa.ch/3DC6MV0
https://cockroa.ch/3DC6MV0

The Information Schema
The information schema is a special schema in each database that contains meta‐
data about the other objects in the database—it is named INFORMATION_SCHEMA in
CockroachDB. You can use the information schema to discover the names and types
of objects in the database. For instance, you can use the information schema to list all
the objects in the information_schema schema:

SELECT * FROM information_schema."tables"
 WHERE table_schema='information_schema';

Or you can use information_schema to show the columns in a table:

SELECT column_name,data_type, is_nullable,column_default
 FROM information_schema.COLUMNS WHERE TABLE_NAME='customers';

The information schema is particularly useful when writing applications against an
unknown data model. For instance, GUI tools such as DBeaver use the information
schema to populate the database tree and display information about tables and
indexes.

The information schema is defined by ANSI standards and implemented by many
relational databases. CockroachDB also includes some internal tables specific to the
CockroachDB system in the crdb_internal schema. Information about these tables
can be found in the CockroachDB documentation (https://cockroa.ch/3797wF3).

Summary
In this chapter, we’ve reviewed the basics of the SQL language for creating, querying,
and modifying data within the CockroachDB database.

A full definition of all syntax elements of CockroachDB SQL would take an entire
book, so we’ve focused primarily on the core features of the SQL language with
some emphasis on CockroachDB-specific features. For detailed syntax and for
details of CockroachDB administrative commands, see the CockroachDB online
documentation.

SQL is the language of CockroachDB, so of course we’ll continue to elaborate on the
CockroachDB SQL language as we delve deeper into the world of CockroachDB.

In the next chapter, we’ll explore schema design and the CockroachDB features that
enable efficient and performant queries.

Summary | 129

https://cockroa.ch/3797wF3

PART II

Developing Applications
with CockroachDB

CHAPTER 5

CockroachDB Schema Design

A sound data model is the foundation of a highly performant and maintainable appli‐
cation. In this chapter, we’ll review the fundamentals of relational schema design,
with a particular focus on aspects of schema design that bear on distributed database
operations and on advanced CockroachDB features such as column families and
JSON binary (JSONB) support. We’ll cover the creation of tables, indexes, and other
schema objects that support a well-designed CockroachDB application.

Although CockroachDB supports mechanisms for efficiently altering schemas online,
schema changes to production applications are nevertheless high-impact changes,
typically involving coordinated changes to application code and production database
configuration. If done poorly, there’s the risk of loss of application functionality, avail‐
ability, or performance. Therefore, although it’s quite possible to alter CockroachDB
schemas in production, it’s far better to get the schema right during application
design.

Relational database design is a big topic and has been the subject of many books and
continuing debate. We don’t want to try to cover advanced design principles here, nor
do we want to engage in any debates about the purity of various design patterns. Most
database models are a compromise between the mathematical purity of the relational
model and the practicalities imposed by the physical database system. Therefore, in
this chapter, we’ll attempt to briefly cover only the theoretical side of the relational
model while diving quite deep into the practicalities of designing a model that will
work well with a CockroachDB implementation.

133

Logical Data Modeling
Application data models are commonly created in two phases. Establishing the logical
data model involves modeling the information that will be stored and processed
by the application and ensuring that all necessary data is correctly, completely, and
unambiguously represented. The logical data model is then mapped to a physical
data model. The physical data model describes the tables, indexes, and views that are
created in the DBMS.

The logical data model typically satisfies only the functional requirements of the
application. The physical data model must also satisfy nonfunctional requirements,
particularly performance requirements.

In practice, these two phases are often blurred together, especially in agile and other
iterative development environments. Nevertheless, whether done explicitly or not,
there is definitely a difference between the analysis required to determine what data
an application might process and how that data is best represented in a specific
database system.

We introduced some of the core concepts of the relational model in Chapter 1. Theo‐
retically, during logical data modeling, we deal with relations, tuples, and attributes,
while in physical design, we deal with tables, rows, and columns. However, outside of
academia, these distinctions are often ignored, and in practice, it’s commonplace to
develop a logical model using the language of tables and columns.

Mea Culpa
Relational data modeling has generated an immense volume of research and debate
over the past four decades. It’s almost impossible to say anything sensible about
relational data modeling without oversimplification or misrepresentation.

This is a book about CockroachDB, not about relational theory, so we have tried to
avoid getting bogged down in debates about the correct way to perform relational
design. Our purpose here is to provide enough quick background on relational
modeling to allow for us to sensibly talk about CockroachDB-specific physical design
principles.

If you want to further explore relational theory and design, there are many excellent
books dedicated to the topic, such as Database Design and Relational Theory by C.J.
Date (O’Reilly).

134 | Chapter 5: CockroachDB Schema Design

https://learning.oreilly.com/library/view/database-design-and/9781449330187

Normalization
A normalized data model is one in which any data redundancy has been elimina‐
ted and in which all data is completely identifiable by primary and foreign keys.
Although the normalized data model is rarely the final destination from a perfor‐
mance point of view, the normalized data model is almost always the best initial
representation of a schema because it minimizes redundancy and ambiguity.

The relational theory defines multiple “levels” of normalization. The third normal
form is the generally accepted standard of an adequately normalized data model.

In third normal form, every attribute (column) in a tuple (row) is dependent on
the entire primary key of that tuple only and not on any other attribute or key. We
sometimes remember this as, “The key, the whole key, and nothing but the key.” For
example, consider the data shown in Figure 5-1.

Figure 5-1. Student test data (denormalized)

Logical Data Modeling | 135

Even if we created a primary key on studentname, testname, and testdate, we
would still be a long way from the third normal form. Attributes such as studentdob
are dependent only on part of the key (studentname), and the repeating “answer”
columns are dependent on a nonkey attribute (the corresponding question).

A normalized version of this data is shown in Figure 5-2. Students take tests, and tests
have questions, and students answer those questions. All attributes in each entity are
now fully dependent on the primary keys for that relation.

Figure 5-2. Student test data (normalized)

Don’t Go Too Far
You’ll generally recognize a well-normalized data model by the absence of any redun‐
dant information. For instance, in Figure 5-2, you’ll notice that student names,
test names, question texts, etc., are never repeated across multiple entities. There
is one and only one entry for each attribute. The only thing that is repeated in a
well-normalized model should be foreign key references.

That being said, it’s often a mistake to take the normalization process too far. In a
real-world database, each new table in the model adds complexity to program code
and overhead in joining information during data retrieval.

For example, from time to time we see addresses “normalized” as in Figure 5-3.
There’s nothing theoretically wrong with this model. Two students could share an
apartment, and the relationships between cities, states, and countries are very real. We
could even throw continent, solar system, and galaxy entities into the model without
violating the third normal form.

136 | Chapter 5: CockroachDB Schema Design

Figure 5-3. Student address model (normalized)

However, in practice, this model will require a five-way JOIN whenever a student’s
address needs to be retrieved. Because this is a pretty common operation, the cost of
the JOIN across the life of the application will be high. It’s probably better just to leave
the address fully embedded in the students table, as shown in Figure 5-2.

Purists will definitely argue that this sort of denormalization should be performed
in the physical data modeling stage. It’s also worth noting that there may be good
reasons for having a city or state table in a production system—each might be
associated with specific attributes of relevance. But we’d suggest that you be pragmatic
when contemplating such extended relationships. There’s a lot of wasted effort in
modeling logical relationships that are inevitably going to be collapsed in the physical
design phase.

Primary Key Choices
In CockroachDB, the choice of primary keys is critical to performance because it is
the primary key that will determine the distribution of data across the nodes in the
system. We’ll talk extensively about this in the Physical Design section.

However, even from the logical modeling point of view, there are some factors to
consider.

The third normal form requires that each relation have a primary key. Yet, it does not
specify whether that key should be natural or artificial. A natural key is one construc‐
ted from unique attributes that normally occur within the entity. An artificial key is
one that is not constructed from the unique attributes of an entity and which exists
only to uniquely identify the row. There is a continual debate within the database
community regarding the merits of “artificial” primary keys versus the “natural” key.

CockroachDB will create an artificial key automatically if an explicit key is not
provided.

Logical Data Modeling | 137

In general, we’re of the opinion that most fundamental entities should use an artificial
key. Artificial keys are generally superior from a performance point of view and
eliminate some of the overhead involved when a natural primary key is changed.
Furthermore, in CockroachDB, the use of an artificial key provides us with methods
for ensuring an even distribution of keys throughout the cluster.

For example, suppose we decided that a user’s email address could serve as a primary
key. The email address is unique to the user, so it’s a perfectly valid key. However,
users can change their email addresses. If that happens, then the update to the users’
data will require not just an update in place to the row but also a relocation of the
data within the cluster. Any foreign keys pointing to the email address key will also
have to be updated and will also have to be relocated.

Special-Purpose Designs
For any given set of data, there usually exists more than one way to create a nearly
correct relational model. Within the universe of possible models, there exist some
patterns that are particularly applicable to certain workloads. Two of the most com‐
mon are:

Data warehousing designs
These models, such as the star and snowflake schemas, have a large central
“fact” table with foreign keys to multiple “dimension” tables. CockroachDB is
not primarily intended as a data warehousing database, so these models are not
typical of a CockroachDB deployment.

Time-series designs
In these models, the time of origin of data is part of each data element’s key and
data accumulates primarily as continual inserts. We’ll briefly consider some of the
considerations for time-series in the next section.

Physical Design
Physical design involves modifying the logical design to improve its performance,
compatibility with the target database, or maintainability.

Not all “relational” databases implement relational features in the same way, and
many have extensions to the relational model that can be useful. Therefore, a logical
to physical mapping depends heavily on the characteristics of the target database.

Other changes are driven by workload considerations. For instance, if a table is only
ever accessed in a JOIN with another table, we might replicate some columns from the
second table into the first to avoid the join.

The other primary physical design drivers are the capabilities and performance
characteristics of the database engine. For instance, in CockroachDB, ascending

138 | Chapter 5: CockroachDB Schema Design

primary keys cause hotspots on certain nodes and should be avoided, while in a
nondistributed SQL database such as PostgreSQL, ascending keys are fine.

In the following sections, we’ll discuss the various logical to physical translations that
apply when implementing a model on CockroachDB.

Entities to Tables
The major output of the logical design process are entities, attributes, and keys. To
convert the logical model to a physical model, we need to convert entities to tables
and attributes to columns.

Depending on your logical model, this conversion may be close to a one-to-one
mapping. However, be aware that in some cases, a single entity may map to multiple
tables or vice versa. For instance, we might decide that the logical model shown in
Figure 5-3 should be collapsed to a single table, folding all address attributes into the
student table. Or we might collapse the addresses entity into students and collapse
states and countries into cities.

In some cases, a logical model may include subtypes in which an entity is defined that
includes multiple “types” of tuples. For instance, a person entity might be defined as
shown in Figure 5-4.

Figure 5-4. Logical model with subtypes

People can be customers or employees (or both). So should there be a single person
table, a customer and an employee table, or even three tables: a person table
with attributes common to customers and employees and a customer table and an
employee table with attributes unique to each type?

Physical Design | 139

The answer depends on your workload and performance requirements. Each of the
previous solutions has a performance advantage for a certain class of query; you’ll
need to think through the operations that are most important to your application.
However, the solution that we’ve seen most often is the two-table model (customers
and employees).

Attributes to Columns
When mapping attributes to columns, we’re mainly concerned with selecting the best
data type for the column and defining its nullability correctly.

Null values are an important concept in relational databases—they distinguish
between data that has a known value and data that is unknown or missing. Three-
valued logic—TRUE/FALSE/NULL—is at the heart of SQL operations, such as WHERE.

In some systems, the use of NULLs in indexed columns is discouraged, and it is
recommended to use NOT NULL with a DEFAULT value. This is because, in some data‐
bases (PostgreSQL, for instance), NULL values are not included in indexes. However,
CockroachDB does store NULL values in indexes, and you can use an index to evaluate
an IS NULL condition within a WHERE clause.

CockroachDB data types generally map easily to logical data types. Consider the
following:

• All these CockroachDB string data types are equivalent: TEXT, CHAR, VARCHAR,•
CHARACTER VARYING, and STRING.

• All of the integer data types—INT, INT2, INT4, INT8, BIGINT, SMALLINT, etc.—are•
stored in the same manner in the database. A BIGINT and a SMALLINT consume
the same storage (providing they hold the same value). The types serve to con‐
strain only the ranges of values that can be stored. The INT type can hold any
allowable integer value (a 64-bit signed integer).

• Similarly, FLOAT, FLOAT4, FLOAT8, and REAL data types all store 64-bit signed•
floating-point numbers.

• DECIMAL stores exact fixed-point numbers and should be used when it’s important•
to preserve precision, such as for monetary values.

• BYTES, BYTEA, and BLOB store binary strings of variable length. The data is stored•
in line with other row data, and therefore, this data type is not suitable for very
large objects (a maximum of 1 MB is suggested).

• TIME stores a time value in UTC, while TIMETZ stores a time value with a time•
zone offset from UTC. TIMESTAMP and TIMESTAMPTZ are similar but include both
date and time in the value.

140 | Chapter 5: CockroachDB Schema Design

1 Sequence generators are provided mainly for compatibility with other databases and are not recommended
for most CockroachDB applications.

We’ll discuss some of the other CockroachDB data types—such as ARRAYs and JSON—
later in the chapter.

Primary Key Design
We’ve touched upon the importance of properly defining CockroachDB primary keys
in preceding chapters; now it’s time to get serious about this important topic.

The primary key of a table is used to distribute the ranges of that table’s data across
the cluster. If the primary key is monotonically increasing, then all new data will be
appended to one range at a time (and hence, one node in the cluster). Most likely,
this node will become a hotspot and limit the insert throughput for the cluster. This
becomes particularly significant as your cluster grows—adding new nodes to a cluster
may fail to result in higher throughput.

The same phenomenon can be encountered in a time-series database in which the
primary key is prefixed with a timestamp. All “new” data will hit a single node, and
your cluster scalability will be compromised.

For instance, consider this implementation of the ORDERS table:

CREATE SEQUENCE order_seq;

CREATE TABLE orders (
salesorderid INT NOT NULL PRIMARY KEY DEFAULT nextval('order_seq'),

 orderdate DATE NOT NULL DEFAULT now() ,
duedate DATE NOT NULL,
shipdate DATE NULL,

 customerid INT NOT NULL,
salespersonid INT NULL,

 totaldue DECIMAL NULL
);

The orders_seq sequence generator produces numbers that are guaranteed to be
incrementing and—most of the time—without gaps.1 Since every value of ORDERID is
one higher than the preceding value, new orders will be inserted into a single range
that will be located on a single node. Consequently, that node will bear the burden
of all INSERT operations. As new ranges are created, the responsibility of handling
inserts will shift to new nodes, but at any given point in time, just a single node will
be handling all of the inserts.

Physical Design | 141

Figure 5-5 illustrates this problem: because ranges are ordered by keys, workloads
with sequential keys will cause all traffic to hit one of the boundaries of a range.

Figure 5-5. Sequential keys can create hotspots

In the next few sections, we’ll look at ways of avoiding this primary key “hotspot”
antipattern.

UUID-based primary keys
If your application doesn’t need primary key values to be continuously increasing,
then a universal unique identifier (UUID) primary key is the recommended solution.

A UUID is a value that is guaranteed to be unique across all systems. A UUID
combines host-specific data, random numbers, and timestamp data to generate an
identifier that will be unique across systems and times.

The gen_random_uuid() function generates UUIDs and can be used as the default
value for a primary key, as in the following example:

CREATE TABLE orders (
orderid uuid NOT NULL PRIMARY KEY DEFAULT gen_random_uuid(),

 orderdate DATE NOT NULL DEFAULT now() ,
duedate DATE NOT NULL,
shipdate DATE NULL,

 customerid INT NOT NULL,
salespersonid INT NULL,

 totaldue DECIMAL NULL
);

UUIDs are unique, selective, and guaranteed to be evenly distributed across all nodes
of a cluster. They are, therefore, the preferred mechanism for CockroachDB primary
keys.

142 | Chapter 5: CockroachDB Schema Design

The SERIAL Data Type
In PostgreSQL, the SERIAL data type is typically used to create autoincrementing KVs.
It’s a handy alternative to creating a sequence, as shown in an earlier example.

However, in CockroachDB the SERIAL data type by default generates unique identifi‐
ers using the unique_rowid() function. unique_rowid() generates unique numbers
that combine nodeid and timestamp. Although the numbers are generally ascending,
the order is not absolutely guaranteed, so large gaps will occur and “hotspots” are still
possible.

You can change the behavior of SERIAL to a more PostgreSQL-compatible behavior
using the session variable serial_normalization. However, as with PostgreSQL, gaps
in sequence numbers generated in this manner may still occur, and the performance
overhead is significant. The CockroachDB team recommends against using SERIAL
data types unless compatibility with PostgreSQL is required.

Avoiding hotspots with a composite key
It may be that your application really requires a monotonically increasing KV. One
way to avoid a hotspot, in this case, is to create a composite primary key that leads
with a nonmonotonically increasing value. For instance, in this implementation the
orderid is prefixed with the customerid in the primary key:

CREATE TABLE orders (
orderid INT NOT NULL DEFAULT nextval('order_seq'),

 orderdate DATE NOT NULL DEFAULT now() ,
duedate DATE NOT NULL,
shipdate DATE NULL,

 customerid INT NOT NULL,
salespersonid INT NULL,

 totaldue DECIMAL NULL,
 PRIMARY KEY (customerid,orderid)
);

This implementation will send orders for a specific customer into the same ranges,
but sequential orders from multiple customers should be distributed across the
cluster.

There may be some upside in “clustering” customer data this way, but the clear
downside is that we now need to know the customer ID when searching for an order.
We’ve probably all experienced the irritation of having to provide both a customer
identifier and an order identifier to a sales associate, so this downside is potentially
significant. Of course, we could create a secondary index just on orderid, but then
we’d create a secondary index with a hotspot.

Physical Design | 143

What we need is a way to index monotonically increasing KVs without creating
unscalable insert hotspots. The solution is hash-sharded indexes.

Hash-sharded primary keys
Hash-sharded indexes add a hashed value to the prefix of a primary key. Each hash
value is unique and nonsequential. Consequently, if the primary key of a table is
based on a hash-sharded index, then its values will be distributed evenly across all
the ranges in the cluster. The result should be (statistically) a perfect distribution of
writes across nodes.

To create a hash-sharded primary key, we would use this syntax:

CREATE TABLE orders (
orderid INT NOT NULL DEFAULT nextval('order_seq'),

 orderdate DATE NOT NULL DEFAULT now() ,
duedate DATE NOT NULL,
shipdate DATE NULL,

 customerid INT NOT NULL,
salespersonid INT NULL,

 totaldue DECIMAL NULL ,
 PRIMARY KEY (orderid) USING HASH WITH BUCKET_COUNT=6
);

The hash sharding is transparent to the application: you’ll never see the hashed
values, and all filters against existing primary keys will work as normal. However, the
new index cannot be used to find ranges of primary keys or to sort the output by
primary key. For instance, with a traditional primary key, the following query would
be resolved efficiently by a range scan of the primary key index:

SELECT * FROM orders
 WHERE orderid > 0
 ORDER BY orderid;

With a hash-sharded index, scan and sort operations would be required, although the
optimizer may be able to perform multiple short scans on hash buckets rather than
one full scan.

The WITH BUCKET_COUNT clause determines how many “shards” of the index are
created. Setting the number of buckets to twice the number of nodes in the cluster is a
sensible default.

144 | Chapter 5: CockroachDB Schema Design

Gaps in Sequential Keys
Although sequences provide for guaranteed ascending KVs, they cannot guarantee
that there will be no missing values in the ordered sequence. For performance
reasons, sequence number increments are not within the scope of an application
transaction. Therefore, if a transaction issues a ROLLBACK after a sequence number
is consumed, that number is lost. To achieve anything like scalable distributed
performance, you would use the CACHE option to give each node its own unique
set of ranges—which will result in keys being inserted out of order across nodes.
Furthermore, cached sequence numbers may be lost on a cluster restart.

If an application needs absolutely gap-free numbers (“no missing orders,” for
instance), then the application will need to implement its own sequence-generating
logic. Balancing performance and functionality, in this case, is not trivial—we’ll look
at this more in Chapter 6.

Ordering of primary key attributes
For a multicolumn primary key, the order of attributes has significant implications
for performance. You should follow the guidelines for composite indexes, which we’ll
outline later in the chapter. Generally, the more often a column is used independently
of other columns, the more you’ll want to place that column first in the primary key.
Likewise, the appearance of primary key columns in ORDER BY clauses should also
influence the sequencing.

Summary of primary key performance
We’ve spent a fair bit of time on primary key mechanisms in CockroachDB for a good
reason. The effect on scalability can be dramatic, and practices that worked fine in
traditional monolithic SQL databases can backfire in CockroachDB.

Figure 5-6 shows just how significant these effects can be. We see that insert through‐
put is severely diminished when SERIAL or sequence-generated keys are used. UUIDs
are preferred, but if you need ascending primary keys, then a hash-sharded primary
key index is recommended.

The data in Figure 5-6 came from a nine-node CockroachDB Cloud cluster. The
performance penalty from ascending primary keys is proportional to the size of the
cluster; the more nodes in the cluster, the larger the relative penalty. So your mileage
may vary depending on your cluster size.

Physical Design | 145

Figure 5-6. Insert performance with various primary key schemes

It’s possible to greatly improve the performance of sequences by creating them with
the CACHE option. This avoids the blocking wait involved in acquiring the “next”
sequence number. However, in a distributed system like CockroachDB, using CACHE
defeats the purpose of the sequence generator. Because each node in the cluster has
its own cache, sequence numbers will be generated out of order across the cluster as a
whole.

Foreign Key Constraints
Foreign key constraints help ensure data integrity and provide internal documenta‐
tion of the data model, which can be leveraged by query generators and diagramming
tools. However, during DML operations—particularly inserts—the validity of the
foreign key must be checked by performing primary key lookups on the referenced
table. These lookups can significantly increase the overhead of the operations and
reduce throughput.

For the table that includes the foreign key constraint, this shows up mostly in insert
performance since it is somewhat unusual for a foreign key to be updated, and the
foreign key references do not need to be validated during deletes.

For the tables that are referenced within the foreign key constraint (e.g., the “parent”
table), the overhead is felt most critically during deletes, where all child tables must
be checked for “dangling” references.

146 | Chapter 5: CockroachDB Schema Design

The ON DELETE CASCADE clause of a CONSTRAINT definition will automatically delete
any child rows during the delete of a parent row. ON UPDATE CASCADE has a similar
effect when a primary key is updated (which in most applications is a rare event).

Because of the overhead of foreign key constraints, it is not unusual for them to
be removed in a production system. They may be left enabled only in test and
development environments to catch any data anomalies.

Denormalization
One of the outcomes in the development of a normalized data model is the removal
of redundancies in data representation. In a well-normalized model, a data element
is represented in just one place within the model. This eliminates the possibility of
inconsistent information within the database.

Denormalization is the process of reintroducing redundant, repeating, or otherwise
nonnormalized structures into the physical model—almost always with the intention
of improving performance.

Denormalizing data is a common practice and one that you should not feel guilty
about. However, do remember that denormalization has potential downsides:

Denormalized data can create inconsistencies.
These might be transitory (waiting for a materialized view to refresh) or perma‐
nent (a derived value is not updated due to a program error). You need to be sure
that you have robust mechanisms in place to preserve data integrity.

Denormalization has a performance overhead.
Although denormalization exists to improve performance, most denormaliza‐
tions have overhead. Typically, you improve query performance at the expense of
DML performance. Make sure you understand and accept these trade-offs.

The best types of denormalizations are those that can be maintained by the database
system automatically and transparently. For instance, in some databases, you might
be tempted to vertically partition a table so that you can separate frequently accessed
and rarely accessed columns. In CockroachDB, column families—introduced in
Chapter 2—provide this capability without the need to change application code. We’ll
discuss column families in more detail in “Vertical Partitioning” on page 149.

Replicating Columns to Avoid Joins
JOIN operations magnify the overhead of retrieving data. Over-enthusiastic normal‐
ization can often result in even the most trivial SELECT operations requiring multi-
table joins. For instance, consider the partial schema shown in Figure 5-7.

Denormalization | 147

Figure 5-7. Overnormalized address data model

To retrieve the address for a person (something we presumably do a lot), we need a
five-table join:

SELECT p.firstname, p.lastname, a.addressline1, a.city, s2.name, c2.name
 FROM person p
 JOIN businessentityaddress b3 ON (b3.businessentityid = p.businessentityid)
 JOIN address a ON (b3.addressid = a.addressid)
 JOIN stateprovince s2 ON (s2.stateprovinceid = a.stateprovinceid)
 JOIN countryregion c2 ON (c2.countryregioncode = s2.countryregioncode)
 WHERE p.businessentityid = 1

Because this JOIN follows primary KVs, it’s going to be reasonably efficient, but it’s
still clearly going to involve five times as many lookup operations as would occur
if all the columns were in the base table. So the solution is obvious: replicate the
address directly into the person table. When a person’s address changes, you may
need to perform two UPDATEs (one to address, one to person), but you will not have
to perform a five-way JOIN every time you want an address.

As with many design decisions, there are many options between the two extremes.
Suppose you want to preserve the multiple-address-per-person design of Figure 5-7.
You could still consider collapsing the state and country tables into the address
table to reduce the number of tables involved in the join.

148 | Chapter 5: CockroachDB Schema Design

Summary Tables
A summary table typically contains aggregated information that is expensive to com‐
pute on the fly. For instance, in the MovR application, we might have a dashboard
that shows revenue trends by city based on the following query:

SELECT CAST(r.start_time AS date) AS ride_date, u.city, SUM(r.revenue)
 FROM rides r
 JOIN users u ON (u.id = r.rider_id)
 GROUP BY ride_date, u.city;

Because revenue for previous days rarely changes, it’s wasteful to continually reissue
this expensive query every time the dashboard requests it. Instead, we create a
summary table from this data and reload the data at regular intervals (perhaps once
an hour).

We can create such a summary table manually, but materialized views exist for this
very purpose. We’d create a materialized view as follows:

CREATE MATERIALIZED VIEW ride_revenue_by_date_city AS
 SELECT CAST(r.start_time AS date) AS ride_date, u.city, SUM(r.revenue)
 FROM rides r
 JOIN users u ON (u.id=r.rider_id)
 GROUP BY ride_date, u.city;

The resulting table is far smaller than the source tables, and we can manually refresh
it whenever we like. One of the advantages of a materialized view is that we can also
update it whenever we like with the REFRESH command:

REFRESH MATERIALIZED VIEW ride_revenue_by_date_city;

Vertical Partitioning
Vertical partitioning involves breaking up a table into multiple tables, each of which
contains a different set of rows. This is typically done to reduce the amount of work
that needs to be completed when updating a row and can also reduce the conflicts
that occur when two columns are subject to high concurrent update activity.

For instance, consider an Internet of Things (IoT) application in which a city’s
current temperature and air pressure are updated multiple times a second by weather
sensor devices across the city:

CREATE TABLE cityWeather (
city_id uuid NOT NULL PRIMARY KEY DEFAULT gen_random_uuid(),
city_name varchar NOT NULL,
currentTemp float NOT NULL,
currentAirPressure float NOT NULL

);

The temperature values and air pressure readings come from different systems, and
we’re concerned that they will cause transaction conflicts when they attempt to

Denormalization | 149

change the same row simultaneously. We could partition the table into two tables to
avoid this conflict:

CREATE TABLE cityTemp (
city_id uuid NOT NULL PRIMARY KEY DEFAULT gen_random_uuid(),
city_name varchar NOT NULL,
currentTemp float NOT NULL

);

CREATE TABLE cityPressure (
city_id uuid NOT NULL PRIMARY KEY DEFAULT gen_random_uuid(),
city_name varchar NOT NULL,
currentAirPressure float NOT NULL

);

However, CockroachDB column families provide a solution that does not require
us to modify our data model. As discussed in Chapter 2, column families allow
groups of columns to be stored separately in the storage layer. We simply add each
measurement to its own family:

CREATE TABLE cityWeather (
city_id uuid NOT NULL PRIMARY KEY DEFAULT gen_random_uuid(),
city_name varchar NOT NULL,
currentTemp float NOT NULL,
currentAirPressure float NOT NULL,
FAMILY f1 (city_id, city_name),
FAMILY f2 (currentTemp),
FAMILY f3 (currentAirPressure)

);

Horizontal Partitioning
Horizontal partitioning (usually just referred to as partitioning) allows a table or
index to be comprised of multiple segments. Some examples include the following:

• Queries can read only the partitions that contain relevant data, reducing the•
number of logical reads required for a particular query. This technique—known
as partition elimination—is particularly suitable for queries that read too great a
portion of the table to be able to leverage an index but still do not need to read
the entire table.

• By splitting tables and indexes into multiple segments, parallel processing can•
be significantly improved because operations can be performed on partitions
concurrently.

CockroachDB supports explicit table partitioning using syntax familiar to those who
have used other enterprise databases, such as Oracle.

However, CockroachDB’s multiregion capabilities eliminate many of the possible
motivations for explicitly partitioning tables. Regional by row tables are transparently

150 | Chapter 5: CockroachDB Schema Design

partitioned in such a way as to optimize access to those rows from a particular region.
In other databases, explicit partitioning might be required to realize this goal. We’ll
look at multiregion topologies in Chapter 11.

Repeating Groups
The relational model abhors repeating groups, because in any such repeating group
the attributes are not fully dependent on the primary key alone. For instance, an array
element is identified by the primary key and the array index.

However, it can be extremely tedious to perform joins to retrieve small groups of
data elements of the same type. For example, at the beginning of the chapter (see
Figure 5-2), we defined a testAnswers entity that contains one row for each answer
on a test. If a test has 100 questions, we need to access 100 rows to see all the results.

The array type provides an alternative mechanism. CockroachDB arrays are one-
dimensional collections of data of the same data type. For instance, we could store the
answers to the test in such an array:

CREATE TABLE studentTest (
student_id uuid NOT NULL,
test_id uuid NOT NULL,
testDate date NOT NULL,
testAnswers varchar[] NOT NULL

);

We can set the results in a single update as follows:

UPDATE studentTest s
 SET testAnswers=array['a','b','c','d']
 WHERE student_id='2fdaadf5-ff3e-45c4-bc92-cc0d566e1ad9'
 AND test_id='dca69ac4-6c53-4efb-8c7e-bca9f412e2ee';

Now we need to access only a single row to get all the test results, which is a
significant reduction in overhead.

Array data types do have some downsides—the query syntax is awkward, and it can
be hard to perform analytic queries. For instance, finding the sum or average of all
elements in an array is not directly supported.

Inverted indexes allow us to directly, efficiently retrieve data from an array data type;
we’ll elaborate on inverted indexes later in the chapter.

JSON Document Models
The biggest challenge to relational databases over the past decade has come from
“document databases” such as MongoDB and Couchbase. These databases store all
data in the form of JSON documents. JSON documents are self-describing, so there

JSON Document Models | 151

doesn’t need to be a formal implementation of a schema in the DBMS. One simply
retrieves the JSON from the database and examines the JSON to decode the structure.

Without entering into any sort of religious debate about the obvious heresy involved
in abandoning the relational model in favor of JSON documents, it’s worth pointing
out that document databases do offer significant conveniences for the developer:

• Modern object-oriented programming (OOP) practices involve the creation of•
complex “objects” that have an internal structure that allows for nesting and
repeating groups. These program objects are typically highly denormalized and,
when stored in an RDBMS, must be unpacked. Object-oriented programmers
used to say, “A relational database is like a garage that forces you to take your
car apart and store the pieces in little drawers.” In contrast, a document database
allows the objects to be stored directly.

• JSON allows for the data model to evolve dynamically. For instance, an applica‐•
tion can store responses from IoT devices over a REST interface without having a
preconceived notion of how those responses are structured.

• Modern DevOps practices involve continuous integration in which the entire•
application can be built directly from code and tested upon any significant
change. RDBMS makes this difficult because a code change and a database
change need to be coordinated—ALTER TABLE statements and code commits
need to be synchronously applied. Document databases avoid this issue.

If these document database advantages are attractive to you, then you’ll probably be
drawn to the idea of storing all or some of your data in a JSONB data type.

JSON objects are self-describing and can contain nested JSON objects and arrays. It’s
commonplace in document databases to embed child data within parent objects to
avoid the need to perform joins. For instance, a house rental database might include
all of the attributes of a property within a nested array:

{
 "_id": "10006546",
 "listing_url": "https://www.airbnb.com/rooms/10006546",
 "name": "Ribeira Charming Duplex",
 "summary": "Fantastic duplex apartment with three bedrooms,
 located in the historic area of Porto, Ribeira (Cube)...",
 "amenities": [
 "TV",
 "Cable TV",
 "Wifi",
 "Kitchen",
 "Paid parking off premises",
 "Waterfront"
],
 "images": {
 "thumbnail_url": "",

152 | Chapter 5: CockroachDB Schema Design

 "medium_url": "",
 "picture_url": "https://a0.muscache.com/im/p/9b.jpg?aki_policy=large",
 "xl_picture_url": ""
 },
 "host": {
 "host_id": "51399391",
 "host_url": "https://www.airbnb.com/users/show/51399391",
 }
}

JSON Document Antipatterns
In CockroachDB, implementing one-to-many relationships in JSON documents is
inadvisable. Because the JSON data is stored inline within the row data within the
underlying KV store, CockroachDB recommends that you keep the size of the JSON
documents fairly small—under 1 MB.

For instance, in the video streaming JSON model that we introduced in the previous
chapter, we embedded all the films that a customer had viewed within a JSON array.
Given all the video streaming that has been going on lately, it’s quite likely that, at
least for some users, the 1 MB limit would be exceeded.

Indexing JSON Attributes
As mentioned in previous chapters, you can create inverted indexes on JSONB col‐
umns. These inverted indexes allow you to search for attribute value matches within
the JSON object. Inverted indexes are easy to create and guarantee that you’ll have
indexed access to attributes within the JSON object without having to anticipate what
those attributes might be.

However, inverted indexes index every attribute in the JSON object and so can have
many more entries in the index than rows in the table—with possible impacts on
storage and index maintenance overhead. An alternative is to create computed col‐
umns on the JSONB attributes and create an index on those attributes. In this case,
you’ll need to know which attributes might need an index lookup, but your indexes
will remain relatively compact.

So let’s say we have decided to store our customer details as a JSONB document. The
basic customer details look like this:

{
 "Address":"1913 Hanoi Way",
 "City":"Sasebo",
 "Country":"Japan",
 "District":"Nagasaki",
 "FirstName":"Mary",
 "LastName":"Smith",
 "Phone":"886780309",

JSON Document Models | 153

 "dob":"1982-02-20T13:00:00Z",
 "likes":[
 "Dinosaurs",
 "Dogs",
 "People"
]
}

We know that we want to search on LastName, FirstName, and we also know we want
to have a foreign key out to an existing cities table. Our CREATE TABLE might look
like this:

CREATE TABLE people (
personId UUID PRIMARY KEY NOT NULL default gen_random_uuid(),
cityId UUID ,

 personData JSONB,
 FirstName STRING AS (personData->>'FirstName') VIRTUAL,
 LastName STRING AS (personData->>'LastName') VIRTUAL,
 FOREIGN KEY (cityId) REFERENCES cities(cityid),
 INDEX (LastName, Firstname)
);

This design allows us to perform index searches on LastName and FirstName, and
to retrieve those attributes from the JSONB document without the awkward JSON
dereferencing syntax that we introduced in the last chapter. We can, however, add
attributes without needing to issue an ALTER TABLE statement, and programmers can
load the personData JSON data directly into a JSON object in their application code.

Using JSON or Arrays to Avoid Joins
We said before that one-to-many relationships should not be modeled in JSONB
columns. The same is true of array columns. We want to avoid storing more data in
these columns than the KV store can process in a single operation.

However, it can be quite effective to model one-to-few relationships in JSONB or
arrays. For instance, consider the Student Tests schema we modeled way back in
Figure 5-2. We know that there can be at most only a couple of hundred questions in
a test. In the normalized solution, we always have to JOIN tables to get the answers for
a specific test:

SELECT s.student_id, s.test_id, question_no, questionanswer
 FROM studentTest s
 JOIN testAnswers t ON(t.student_id=s.student_id AND t.test_id = s.test_id)
 WHERE s.student_id = ?
 AND s.test_id = ?;

Being sure that the 1 MB limit will not be exceeded, we could collapse the test
answers into a JSON document:

154 | Chapter 5: CockroachDB Schema Design

CREATE TABLE studentTest (
student_id uuid NOT NULL ,
test_id uuid NOT NULL,
testDate date NOT NULL,
answers JSONB

);

INSERT INTO studentTest (student_id, test_id, testDate, answers)
 VALUES ('2fdaadf5-ff3e-45c4-bc92-cc0d566e1ad9',
 'dca69ac4-6c53-4efb-8c7e-bca9f412e2ee',
 now(),
 '{"answers":[

 {"questionNumber":1,"Answer":5},
 {"questionNumber":2,"Answer":25},
 {"questionNumber":3,"Answer":58},
 {"questionNumber":4,"Answer":3425},
 {"questionNumber":5,"Answer":432},
 {"questionNumber":6,"Answer":0},
 {"questionNumber":7,"Answer":673}

]}');

We can also use arrays or JSON repeating groups to avoid joins where there is a
many-to-few relationship between two tables. For instance, consider the relationship
between students and classes as shown in Figure 5-8.

Figure 5-8. Students and classes

Whenever we want to get a list of a student’s classes, we’re forced to perform a
three-way join:

SELECT class_name FROM students
 JOIN studentClasses USING(student_id)
 JOIN classes USING(class_id)
 WHERE student_id = '000390a6-4e1d-4bc1-aad7-66b645131d54';

JSON Document Models | 155

The table studentClasses exists only to JOIN the students and classes tables—it
contains no independent information.

We could instead store foreign keys for all the classes in an array type:

ALTER TABLE students ADD COLUMN classes UUID[];

UPDATE students s SET classes = (
 SELECT array_agg(class_id)
 FROM studentClasses sc
 WHERE s.student_id = sc.student_id);

The array_agg function takes all the columns in a result set and converts them to an
array. In the prior example, we copied all the class_id values for each student into
the classes array.

Now when we want to get the classes for a particular student, we can “unnest” the
array and JOIN the resulting class_id values directly to the classes table:

WITH students_classes AS (
SELECT student_id, UNNEST(classes) class_id
 FROM students

)
SELECT class_name FROM classes
 JOIN students_classes USING(class_id)
 WHERE student_id = '000390a6-4e1d-4bc1-aad7-66b645131d54';

This might all seem to be a bit convoluted, but in a high-performance workload,
reducing a three-way JOIN to a two-way JOIN might be necessary to achieve perfor‐
mance objectives, even if it complicates application code a little.

Of course, we can avoid the joins altogether if we embed all the information about a
student’s classes into a JSONB column, just as we did earlier for test answers. However,
that array solution doesn’t duplicate any information from the classes table into
the students table, so if the name of a class changes, we have only one update to
perform.

Do bear in mind that by embedding foreign keys this way, we lose the capability
of defining FOREIGN KEY constraints and create some opportunities for data inconsis‐
tencies. Furthermore, with this solution, it is difficult to find all students for a given
class because we would have to unpack the array of classes for every student.

Indexes
An index is a database object that provides a fast path to specific data within a table.

We looked at the structure of indexes in Chapter 2. You might recall that in
CockroachDB, indexes and tables share a common fundamental storage structure. A
base table is essentially a relation indexed by the primary key. Secondary indexes are

156 | Chapter 5: CockroachDB Schema Design

also relations but are indexed by the index key, with the column values representing
the primary KVs associated with that secondary key.

Indexes exist to optimize performance and enforce uniqueness. Indexes can generally
be added to a system without requiring any change to application code, so compared
with other options for physical implementation, they are fairly easy to modify. Creat‐
ing an optimal set of indexes is one of the most important factors in ensuring optimal
database performance.

Index Selectivity
The selectivity of a column or group of columns is a common measure of the
usefulness of an index on those columns. Columns or indexes are selective if they
have a large number of unique values and few duplicate values. For instance, a
Date_of_birth column will be quite selective, while a Gender column will not be at
all selective.

Selective indexes are more efficient than nonselective indexes because they point
more directly to specific values. The CockroachDB optimizer will determine the
selectivity of the various indexes available to it and will generally try to use the most
selective index.

Index Break-Even Point
When you want to look up just a few things in a textbook, you go to the index. When
you want to assimilate all or most of the content, you bypass the index and go directly
to the text. It’s the same with database indexes—we generally want to use them only
when we are retrieving a relatively small amount of a table’s data.

A noncovering index—one that includes the filter conditions but not all the columns
in the SELECT list—is generally effective only when we are retrieving a small percent‐
age of a table’s data. Beyond that, the overhead of going backward and forward from
index to base table will be slower than simply reading all the rows in the table.

The optimizer will attempt to determine how much data is being accessed and choose
an index or a table scan as appropriate. However, you don’t want to create an index
that will never be used, so it’s important to understand the cut-off point between an
index and a table scan.

However, when we create a covering index using the STORING clause, the situation is
very different; in this case, the index can outperform the table access even if large
proportions of data are accessed. It is true that adding columns to the index using
the STORING clause will increase the overhead of index maintenance, but most of the
time the improvement in query performance will be greater than the increase in write
overhead.

Indexes | 157

For instance, let’s say we have time-series data where a measurement (say a tempera‐
ture) was recorded every minute over the past year. The application is often asked to
determine the average measurement over some recent time period. The query looks
something like this:

SELECT AVG(measurement)
 FROM timeseries_data
 WHERE measurement_timestamp >
 ((date '20220101') - INTERVAL '$dayFilter days');

The variable $dayFilter can take low or high values. We can create a noncovering
index on the table as follows:

CREATE INDEX timeseries_timestamp_i1
 ON timeseries_data(measurement_timestamp);

However, this index will be effective only when the number of days selected is very
small—probably less than a week. Alternatively, we could create a covering index that
includes the measurement column:

CREATE INDEX timeseries_covering
 ON timeseries_data(measurement_timestamp) STORING (measurement);

This index can be used effectively for any span of data—from one day to the entire
year’s data.

Figure 5-9 compares the performance of an index scan with a table scan against the
number of days of data being retrieved. The table scan must do the same amount of
work regardless of the amount of data being processed, while an index scan increases
in overhead the larger the amount of data being processed. For a noncovering index,
a table scan is better if there’s more than about a week’s worth of data retrieved (about
2% of the total data). However, a covering index can perform well even if we are
retrieving all of the table’s data.

There are a few lessons to be drawn from Figure 5-9:

• The optimizer switches from an index scan to table scan when the amount of•
data hits about 10% to 15% of the total. The optimizer is a sophisticated piece
of software, but it isn’t magic, and it can’t always work out which access path is
better. In some circumstances, creating a noncovering index will actually degrade
performance.

• A covering index is far superior in performance to a noncovering index and can•
be used effectively even if all or most of the table is being accessed. Whenever
possible, use a covering index.

• Remember that in CockroachDB, indexes and tables have the same storage•
format: a covering index is not just a fast access mechanism—it’s also a compact

158 | Chapter 5: CockroachDB Schema Design

representation of a subset of table columns that can be scanned far faster than the
base table.

Figure 5-9. Comparison of table scan versus index scan performance

We’ll come back to index performance and tuning queries in Chapter 8.

Index Overhead
Although indexes can dramatically improve read performance, they do reduce the
performance of write operations. All of a table’s indexes must normally be updated
when a row is inserted or deleted, and an index must also be amended when an
update changes any column that appears in the index.

It is, therefore, important that all our indexes contribute to query performance, since
these indexes will otherwise needlessly degrade write performance. In particular, you
should be especially careful when creating indexes on frequently updated columns. A
row can be inserted or deleted only once but may be updated many times. Indexes
on heavily updated columns or on tables that have a very high insert/delete rate will
therefore exact a particularly high cost. Figure 5-10 illustrates the overhead on write
performance that occurs as more indexes are added to a table.

Note that you can’t improve performance by removing the primary key index. If
an explicit primary key index does not exist, CockroachDB will create an artificial
primary key for you.

Indexes | 159

Figure 5-10. Index overhead—time to insert 120,000 rows

Composite Indexes
A composite index is simply an index created from more than one column. The
advantage of a composite index is that it is often more selective than a single column
index. The combination of columns will point to a smaller number of rows than
separate indexes composed of the individual columns.

For instance, if we know that we frequently perform searches on firstname and
lastname, then it makes sense to create an index on both of those columns:

CREATE INDEX flname_idx ON person (lastname,firstname);

Such an index will be far more effective than an index on lastname alone or separate
indexes on lastname and firstname. We’ll provide some performance comparisons
for composite indexes a bit later in the chapter.

If a composite index could be used only when all of its keys appeared in the WHERE
clause, then you would have to create a lot of composite indexes—as many as you had
distinct combinations of columns in the WHERE clause. Luckily, a composite index can
be used effectively, provided any of the initial or “leading” columns are used. Leading
columns are those that are specified earliest in the index definition.

160 | Chapter 5: CockroachDB Schema Design

So, for instance, the index on (lastname, firstname) that we just created can
optimize this query:

SELECT * FROM person WHERE lastname='Wood';

But not this query:

SELECT * FROM person WHERE firstname='John' ;

Covering Indexes
A covering index is one that is capable of satisfying a query without reference to the
base table. For instance, consider the following query:

SELECT phonenumber
 FROM people
 WHERE lastname = 'Smith'
 AND firstname = 'Samantha'
 AND state = 'California' ;

Here, an index on lastname, firstname, state, and phonenumber would not only be
able to find the data requested but would also be able to return the phonenumber. Only
a single index access—and no base table read—would be needed.

In CockroachDB, we can use the STORING clause to store data elements that we might
use in the SELECT clause but not in the WHERE clause. For the previous query, this
index would be optimal:

CREATE INDEX people_lastfirststatephone_ix ON people
 (lastname, firstname, state)
 STORING (phonenumber);

Of course, we could also create a covering index without the STORING clause simply
by adding the column to the index. For example:

CREATE INDEX people_lastfirststatephone_ix ON people
 (lastname, firstname, state, phonenumber);

This index could then be used to satisfy queries that included the phone number in
the WHERE clause and, therefore, will often be superior. However, STORING does have
some advantages. Some data types (such as JSON and arrays) can’t be indexed, but
all data types can be stored. Other data types take up more space when indexed than
when stored (this is most severe for collated strings). If you know you don’t need to
filter by a column, it may be more efficient to store it instead of indexing it.

Indexes | 161

Composite and Covering Index Performance
Figure 5-11 illustrates the performance advantages offered by composite and covering
indexes. The chart shows the number of KV store options necessary to satisfy this
query under various indexing scenarios:

SELECT phonenumber
 FROM people
 WHERE lastname = 'Smith'
 AND firstname = 'Samantha'
 AND state = 'California' ;

Figure 5-11. Composite index performance

Figure 5-11 shows that without indexing, the query requires 18,798 KV operations—
we have to read every row in the table. Single indexes on lastname or firstname
improve the performance somewhat, and having both a lastname and firstname
index is better than just having either of the two indexes alone.

However, it’s not until we use a composite index that we see truly efficient indexing.
Only six KV reads are needed if we have an index on lastname and firstname, and
only two KV operations are needed for an index on lastname, firstname, and state.
If we STORE the phonenumber in the index, then only a single KV operation is needed.

162 | Chapter 5: CockroachDB Schema Design

Guidelines for Composite Indexes
As we saw earlier, the performance improvements from indexes don’t come without a
cost—each index adds overhead to DML operations, so we usually can’t create every
possible index that we might like.

The best strategy is to create composite indexes that cover the broadest possible
ranges of queries. A composite index can be used if any of its leading columns
are included in a WHERE clause, so the ordering of columns in composite indexes is
important.

The following guidelines might help when deciding which indexes to create:

• Create composite indexes for columns that appear together in the WHERE clause.•
• If columns sometimes appear on their own in a WHERE clause, place them at the•

start of the index.
• The more selective a column is, the more useful it will be at the leading end of the•

index.
• A composite index is more useful if it also supports queries where not all•

columns are specified. For instance, lastname, firstname is more useful than
firstname, lastname because queries against only lastname are more likely to
occur than queries against only firstname.

Indexes and Null Values
In many relational databases, null values are not included in indexes. Consequently,
in these systems, it is often recommended not to use null values if you might want
to search for those values. However, in CockroachDB, null values are included in
indexes and can be found using an index in the normal way.

Inverted Indexes
We discussed inverted indexes in Chapter 2 and earlier in this chapter in “JSON
Document Models” on page 151. An inverted index creates an index for all elements
in an array and for all attributes in a JSONB column. As useful and flexible as these
inverted indexes may be, they are expensive from a storage and maintenance point
of view. We recommend, whenever possible, creating a computed column from the
JSONB attribute concerned and indexing on that column.

Indexes | 163

Partial Indexes
A partial index can be created on only a subset of rows in the table. A partial index is
created by adding a WHERE clause to the CREATE INDEX statement.

Partial indexes can have a lower maintenance overhead, require less storage in the
database, and be more efficient for suitable queries. They are, therefore, a very useful
type of index.

The key limitation with a partial index is that it can be used only when CockroachDB
can be certain that the partial index contains all the necessary entries to satisfy the
query. In practice, this means that a partial index is normally used to optimize queries
that contain the same WHERE clause filter condition that was included in the index
definition.

Sort-Optimizing Indexes
Indexes can be used to optimize ORDER BY operations in certain circumstances. When
CockroachDB is asked to return data in sorted order, it must retrieve all the rows to
be sorted and perform a sort operation on those rows before returning any of the
data. However, if an index exists on the ORDER BY columns, then CockroachDB can
read the index and retrieve the rows directly from the index in sorted order.

Using the index to retrieve data in sorted order is usually only worthwhile if you are
optimizing for some small number of “top” rows. If you read the entire table in sorted
order from the index, then you’ll be reading all the index entries as well as all the
table entries, and the total number of I/O operations will be excessive. However, if
you are just getting the first “page” of data or a “top 10,” then the index will be much
faster since you never have to read the rest of the table rows at all.

However, if the index contains all the columns you need in the output, either because
it indexes all those columns or is using STORING on the others, then you get the best of
both worlds—you can retrieve all rows efficiently in sorted order.

Figure 5-12 illustrates the effect of an index to optimize a sort like this:

SELECT *
 FROM orderdetails
 ORDER BY modifieddate;

When a LIMIT clause was added to the query, the index reduced execution time from
123 ms to just 2 ms—a fantastic improvement. However, if we force CockroachDB to
use the index to retrieve all rows (something it won’t do by default), then execution
time will increase from 296 ms to 4,000 ms.

164 | Chapter 5: CockroachDB Schema Design

Figure 5-12. Indexes and sort performance

Expression Indexes
As the name suggests, expression indexes are indexes that are created on expressions!
Perhaps you’d like to create an index on a column but will always be performing
some kind of operation on that column before using it. Expression indexes are a good
choice in these situations. Let’s explore some examples where expression indexes can
help.

For the examples that follow, we’ll create a simple table and insert some data into it:

CREATE TABLE customer (
 "id" UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 "email" STRING NOT NULL,
 "address" JSON NOT NULL
);

INSERT INTO customer ("email", "address") VALUES
 ('person@acme.com', '{"zip": "10001"}'),
 ('person@example.com', '{"zip": "EC4M 9AF"}');

We’ll build two expression indexes against the customer table. One will index the
domain portion of a customer’s email address (perhaps we’d like to filter for custom‐
ers from a particular company) and another will index a field within their address
JSON.

Indexes | 165

If we were to query for the domain portion of a customer’s email address now,
CockroachDB would have to perform a full table scan. It would have to read each of
the email values, extract the domain from the email address, and test it against the
given value we’re filtering on:

EXPLAIN SELECT * FROM customer
WHERE REGEXP_EXTRACT("email", '@(.+)$') = 'acme.com';

 distribution: local
 vectorized: true

 • filter
 │ filter: regexp_extract(email, '@(.+)$') = 'acme.com'
 │
 └── • scan
 missing stats
 table: customer@customer_pkey
 spans: FULL SCAN

As shown in the following example, applying an expression index to the column
allows CockroachDB to pinpoint an email’s domain, not only preventing a regex
extraction from occurring against every row during the search but also saving
CockroachDB from having to scan the column to find the value (as the meta
ranges would point to the exact location of the matching row or rows). The index
usage can be seen in the last line of the EXPLAIN output as spans: [/'acme.com'
- /'acme.com'], which matches the value we were filtering for:

CREATE INDEX idx_customer_email_domain
 ON customer ((REGEXP_EXTRACT("email", '@(.+)$')));

SELECT * FROM customer
WHERE REGEXP_EXTRACT("email", '@(.+)$') = 'acme.com';

 id | email | address
---------------------------------------+-----------------+-------------------
 e13ab911-61ac-42af-be0c-1abff74d598e | person@acme.com | {"zip": "10001"}

EXPLAIN SELECT * FROM customer
WHERE REGEXP_EXTRACT("email", '@(.+)$') = 'acme.com';

 distribution: local
 vectorized: true

 • index join
 │ estimated row count: 1
 │ table: customer@customer_pkey
 │
 └── • scan
 estimated row count: 2 (99% of the table; stats collected 4 minutes ago)
 table: customer@idx_customer_email_domain
 spans: [/'acme.com' - /'acme.com']

166 | Chapter 5: CockroachDB Schema Design

Expression indexes can also be created against fields within JSON documents. The
most flexible index for a JSON document is an inverted index, which indexes every
field within the document. However, if you only care about one or two fields within
the document, an inverted index might be overkill. Let’s index the customer’s zip code
with an expression index to save having to index their entire address:

CREATE INDEX idx_customer_address_zip
 ON customer (("address"->>'zip'));

SELECT * FROM customer
WHERE "address"->>'zip' = 'EC4M 9AF';

 id | email | address
---------------------------------------+--------------------+--------------------
 07844da4-a417-45be-8ea5-b2c1767d6ebc | person@example.com | {"zip": "EC4M 9AF"}

EXPLAIN SELECT * FROM customer
WHERE "address"->>'zip' = 'EC4M 9AF';

 info

 distribution: local
 vectorized: true

 • index join
 │ estimated row count: 1
 │ table: customer@customer_pkey
 │
 └── • scan
 estimated row count: 2 (99% of the table; stats collected 5 minutes ago)
 table: customer@idx_customer_address_zip
 spans: [/'EC4M 9AF' - /'EC4M 9AF']

The expression index has prevented a full table scan and has allowed CockroachDB
to pinpoint the exact location of any rows containing our requested zip code.

Full-Text Indexes
CockroachDB supports natural-language full-text searching via a combination of the
TSVECTOR and TSQUERY data types.

To prepare a string of text for full-text search, it must first be normalized. Use the
to_tsvector function to normalize a string into a TSVECTOR comprising lexemes and
positions as follows:

SELECT to_tsvector('the quick brown fox jumps over the lazy dog');
-- Returns: 'brown':3 'dog':9 'fox':4 'jump':5 'lazi':8 'quick':2

Then prepare a query string via the to_tsquery, plainto_tsquery, or phrase
to_tsquery functions:

Indexes | 167

SELECT to_tsquery('over & the & lazy & dog');
-- Returns: 'lazi' & 'dog'

SELECT plainto_tsquery('over the lazy dog');
-- Returns: 'lazi' & 'dog'

SELECT phraseto_tsquery('over the lazy dog');
-- Returns: 'lazi' <-> 'dog'

Note how the word “lazy” becomes “lazi”. This is due to “stemming,” a process that
reduces words to their root or base form. Note also that the phraseto_tsquery
function results in a TSQUERY that enforces the ordinal relationship of the string
provided (i.e., “lazy” must precede “dog” in this example).

Combining TSVECTOR and TSQUERY with the ts_rank function yields a numeric value
indicating the frequency of matching lexemes, where a higher value indicates a better
match:

SELECT ts_rank(
 to_tsvector('the quick brown fox jumps over the lazy dog'),
 plainto_tsquery('what did the quick brown fox jump over?')
);
-- Returns: 0.46362182

SELECT ts_rank(
 to_tsvector('the quick brown fox jumps over the lazy dog'),
 plainto_tsquery('i like coffee')
);
-- Returns: 1e-20 (or 0.00000000000000000001)

The @@ matching operator can also be used to match vectors and queries. It returns a
Boolean true or false value depending on whether a match has been found:

SELECT to_tsvector('the quick brown fox jumps over the lazy dog') @@
 plainto_tsquery('what did the quick brown fox jump over?');
-- Returns: t

SELECT to_tsvector('the quick brown fox jumps over the lazy dog') @@
 plainto_tsquery('i like coffee');
-- Returns: f

With what we’ve learned from the available data types and functions, let’s create a
table with support for full-text searching:

CREATE TABLE article (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 title STRING NOT NULL,
 title_vec TSVECTOR NOT NULL AS (to_tsvector('english', title)) STORED,

 INVERTED INDEX (title_vec)
);

168 | Chapter 5: CockroachDB Schema Design

INSERT INTO article (title) VALUES
 ('The rise and fall of North Korea - the sleeping giant of women''s football'),
 ('Northern lights illuminate skies as far south as Cornwall'),
 ('The ''superfood'' taking over fields in northern India');

This table contains a “title” column and a TSVECTOR equivalent, which stores the title’s
lexemes:

SELECT title_vec FROM article;

/* Returns:
 'cornwal':9 'far':6 'illumin':3 'light':2 'northern':1 'sky':4 'south':7
 'fall':4 'footbal':14 'giant':10 'korea':7 'north':6 'rise':2 'sleep':9 ...
 'field':5 'india':8 'northern':7 'superfood':2 'take':3
 */

We can now search against the table with a combination of the ts_rank and @@
operator:

SELECT title
FROM article, to_tsquery('northern') AS query
WHERE query @@ title_vec;

/* Returns:
 Northern lights illuminate skies as far south as Cornwall
 The 'superfood' taking over fields in northern India
*/

Spatial Indexes
A spatial index is a special type of inverted index that supports operations on the GEOM
ETRY and GEOGRAPHY two-dimensional spatial data types. Spatial indexing is a complex
topic, and we aim only to introduce you to some key concepts here. For more details,
consult the CockroachDB documentation set (https://cockroa.ch/3LzUm2E).

To create a spatial index, we add the USING GIST(geom) clause:

CREATE INDEX geom_idx_1 ON some_spatial_table USING GIST(geom);

We can further fine-tune the index using various spatial index tuning parameters
(https://cockroa.ch/3r0ABcY):

CREATE INDEX geom_idx_1 ON geo_table1 USING GIST(geom)
WITH (s2_level_mod = 3);
CREATE INDEX geom_idx_2 ON geo_table2 USING GIST(geom)
WITH (geometry_min_x = 0, s2_max_level = 15)
CREATE INDEX geom_idx_3 ON geo_table3 USING GIST(geom)
WITH (s2_max_level = 10)
CREATE INDEX geom_idx_4 ON geo_table4 USING GIST(geom)
WITH (geometry_min_x = 0, s2_max_level = 15);

Indexes | 169

https://cockroa.ch/3LzUm2E
https://cockroa.ch/3r0ABcY

We don’t recommend that you change these default tuning parameters; the default
values will generally provide the best performance.

Hash-Sharded Indexes
Earlier in this chapter, we showed how in a distributed database, monotonically
increasing primary keys can lead to “hotspots” in a distributed database. We recom‐
mended using hash-sharded indexes as a way of avoiding such an issue for monoton‐
ically increasing primary keys.

These sorts of hotspots don’t just occur in primary keys. Any indexed column that
is monotonically increasing might end up with all new values in a single range, thus
creating a scalability and throughput issue.

If you have indexed columns where the value is constantly increasing (timestamps are
a good example) and you want to avoid such an insert hotspot, then you should con‐
sider hash-sharding the index. The syntax is the same as for the primary key example
we showed in “Hash-sharded primary keys” on page 144. For instance, to create a
hash-sharded index on the modifieddate column, we might do the following:

SET experimental_enable_hash_sharded_indexes=on;

CREATE INDEX orderdetails_hash_ix
 ON orderdetails(modifieddate)
 USING HASH WITH BUCKET_COUNT = 6;

Note that while CockroachDB might not optimize a sort with a hash-sharded index,
it still might provide good enough performance for a “top 10” type of query. We can
force the use of the hash-sharded index to perform an ORDER BY using an index hint
(more on this in Chapter 8):

SELECT *
 FROM orderdetails@orderdetails_hash_ix
 ORDER BY modifieddate LIMIT 10;

CockroachDB will retrieve the top 10 from each “bucket” and amalgamate the results
on the gateway node. The result might still be a marked improvement over a full scan.

Measuring Index Effectiveness
Having created an index, we’d like to be sure that it is being used to optimize our
query and discover exactly how much benefit we have achieved. We can do this using
the EXPLAIN and EXPLAIN ANALYZE commands.

EXPLAIN reveals to us the CockroachDB optimizer “plan” for a SQL statement. We’ll
dig into EXPLAIN in detail in Chapter 8, but for now, let’s just quickly see how EXPLAIN
works to reveal your query’s performance characteristics.

170 | Chapter 5: CockroachDB Schema Design

EXPLAIN reveals the optimizer’s plan for resolving a query. For instance, if we created
an index on the people table and wanted to see if the query would use it, we could
issue the following command:

EXPLAIN
SELECT phonenumber
 FROM people
 WHERE lastname = 'Smith'
 AND firstname = 'Samantha'
 AND state = 'California';

 info

 distribution: local
 vectorized: true

 • filter
 │ estimated row count: 63
 │ filter: state = 'California'
 │
 └── • index join
 │ estimated row count: 5
 │ table: people@primary
 │
 └── • scan
 estimated row count: 5 (0.02% of the table;)
 table: people@people_lastfirst_ix
 spans: [/'Smith'/'Samantha'—/'Smith'/'Samantha']

We can see that the people_lastfirst_ix will be used to resolve the query.

However, in some cases we might still not be sure if the index improved execution
time. If we use EXPLAIN analyze, then CockroachDB will execute the operation and
will report on the amount of I/O and other operations that occurred:

EXPLAIN analyze
SELECT phonenumber
 FROM people
 WHERE lastname='Smith'
 AND firstname='Samantha'
 AND state='California';

 info
--
 planning time: 2ms
 execution time: 4ms
 distribution: local
 vectorized: true
 rows read from KV: 6 (598 B)
 cumulative time spent in KV: 3ms
 maximum memory usage: 30 KiB
 network usage: 0 B (0 messages)

Indexes | 171

 • filter
 │ cluster nodes: n1
 │ actual row count: 1
 │ estimated row count: 63
 │ filter: state = 'California'
 │
 └── • index join
 │ cluster nodes: n1
 │ actual row count: 3
 │ KV rows read: 3
 │ KV bytes read: 430 B
 │ estimated row count: 5
 │ table: people@primary
 │
 └── • scan
 cluster nodes: n1
 actual row count: 3
 KV rows read: 3
 KV bytes read: 168 B
 estimated row count: 5 (0.02% of the table)
 table: people@people_lastfirst_ix
 spans: [/'Smith'/'Samantha'—/'Smith'/'Samantha']

EXPLAIN has some additional advanced features that we’ll learn about in Chapter 8.
However, you can see how easy it is to use EXPLAIN to simply determine index
utilization and effectiveness.

Summary
In this chapter, we looked at design principles for a CockroachDB database schema.
A sound data model is an essential foundation for a performant and maintainable
CockroachDB database.

Database modeling typically proceeds in two stages: logical modeling followed by
physical modeling. The aim of logical modeling is to identify the data required for
application functionality. During physical modeling we aim to construct a data model
that can meet functional requirements together with performance and availability
requirements. The physical model should almost never be a direct copy of the logical
model.

Database design for a distributed SQL database like CockroachDB creates some
unique challenges when compared with a traditional monolithic database. In particu‐
lar, primary keys should be constructed so that new rows are distributed equitably
across the nodes in the cluster. The UUID data type can achieve this, but if an
ascending primary key is required, then using hash-sharded primary key indexes is
recommended.

172 | Chapter 5: CockroachDB Schema Design

We also looked at indexing choices for a CockroachDB database design. Creating
the least number of composite indexes to support common filter conditions is our
objective. We may also want to create some indexes to support sort operations.

Now that we’ve learned how to create a data model, we are in a position to start
writing application code. In the next chapter, we’ll see how to use CockroachDB SQL
in application development frameworks.

Summary | 173

CHAPTER 6

Application Design and Implementation

Like all databases, CockroachDB responds to requests from application code. How
an application requests and uses data has a huge bearing on application performance
and scalability. In this chapter, we’ll review how an application should work with
CockroachDB, including best practices for coding CockroachDB requests and trans‐
actional models.

Because CockroachDB is PostgreSQL wire protocol–compatible, any programming
language that supports PostgreSQL can be used with CockroachDB. And in general,
the programming idioms and best practices of PostgreSQL apply to CockroachDB.
However, because of the distributed nature of CockroachDB, there are some differ‐
ences in programming styles between CockroachDB and PostgreSQL.

Although you can work with CockroachDB using pretty much any programming
language in common use, in this chapter, we’ll constrain our discussion to four
languages: Go, Java, Python, and JavaScript.

Previously, we showed how to install language drivers for each of these languages.
Please refer back to Chapter 3 for instructions on driver installation, or refer to
the CockroachDB documentation (https://cockroa.ch/3Kpm8ik) for more detailed
guidelines, including guidance on how to install drivers for other languages or for
alternative drivers.

CockroachDB Programming
CockroachDB is broadly compatible with the universe of SQL-relational databases
and particularly compatible with PostgreSQL. However, there are a few unique pro‐
gramming idioms specific to CockroachDB as a result of its distributed nature and
transactional consistency model.

175

https://cockroa.ch/3Kpm8ik

In the following sections, we’ll review both the general principles involved in coding
an application against a CockroachDB server and look at some issues specific to
CockroachDB.

Performing CRUD Operations
We provided basic “Hello world” examples for each language back in Chapter 3. Let’s
extend those examples to perform some nontrivial CRUD operations—Create, Read,
Update, Delete.

Programming drivers differ in terms of vocabulary, but they generally adopt a similar
grammar. The fundamental operations in a database program are:

• The driver establishes a connection object representing a connection to the data‐•
base server. In this chapter, we’ll be creating individual connections, but applica‐
tions will often use a connection pool to manage multiple reusable connections
instead.

• The connection object is used to execute SQL statements.•
• Some statements return result sets that can be used to iterate through tabular•

output returned by SELECT statements, DML statements that include a RETURNING
clause, and some other statements that return results.

Here we see this basic pattern in Java:

package chapter06c;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class example1 {

 public static void main(String[] args) {
 try {
 Class.forName("org.postgresql.Driver");
 String connectionURL = "jdbc:" + args[0];
 String userName = args[1];
 String passWord = args[2];

 Connection connection = DriverManager.getConnection(
 connectionURL, userName, passWord);
 Statement stmt = connection.createStatement();
 stmt.execute("DROP TABLE IF EXISTS names");
 stmt.execute("CREATE TABLE names (name String PRIMARY KEY NOT NULL)");
 stmt.execute("INSERT INTO names (name) VALUES('Ben'),('Jesse'),('Guy')");

 ResultSet results = stmt.executeQuery("SELECT name FROM names");

176 | Chapter 6: Application Design and Implementation

 while (results.next()) {
 System.out.println(results.getString(1));

 }
 results.close();
 stmt.close();
 connection.close();

 } catch (Exception e) {
 e.printStackTrace();
 System.exit(0);
 }
 }
}

We create a single connection object and a single statement object, then use the
statement to execute multiple SQL commands. When we execute a query, we create
a ResultSet object that we can use to iterate through results. Finally, we close all these
objects.

Note that we can retrieve column values from the ResultSet object by position or by
name—in the example, we provided the column position, but we could have also
specified the column name.

What follows is similar logic for Python. The cursor() method of the connection
object creates a cursor object that can be used to execute a statement or navigate
through a result set:

import psycopg2
import sys

def main():

 if ((len(sys.argv)) !=2):
 sys.exit("Error:No URL provided on command line")
 uri=sys.argv[1]

 connection = psycopg2.connect(uri)
 cursor=connection.cursor()
 cursor.execute("DROP TABLE IF EXISTS names")
 cursor.execute("""CREATE TABLE names
 (name String PRIMARY KEY NOT NULL)""")
 cursor.execute("""INSERT INTO names (name)
 VALUES('Ben'),('Jesse'),('Guy')""")
 cursor.execute("SELECT name FROM names")
 for row in cursor:
 print(row[0])
 cursor.close()
 connection.close()

main()

CockroachDB Programming | 177

Here we do the same thing in a Node.js program:

const CrClient = require('pg').Client;

async function main() {
 try {
 if (process.argv.length != 3) {
 console.log(`Usage: node ${process.argv[1]} CONNECTION_URI`);
 process.exit(1);
 }

 const connection = new CrClient(process.argv[2]);
 await connection.connect();

 await connection.query('DROP TABLE IF EXISTS names');
 await connection.query(`CREATE TABLE names
 (name String PRIMARY KEY NOT NULL)`);
 await connection.query(`INSERT INTO names (name)
 VALUES('Ben'),('Jesse'),('Guy')`);

 const data = await connection.query('SELECT name from names');
 data.rows.forEach((row) => {
 console.log(row.name);
 });
 } catch (error) {
 console.error(error.stack);
 }
 process.exit(0);
}

main();

We’ve used the “async/await” style for handling asynchronous database requests.
You can also use callbacks or promises if that is your programming style. The
node-postgres driver documentation (https://cockroa.ch/3j1GSjY) contains examples
of using each of these programming styles.

Finally, let’s look at how we’d perform the same task in Go:

package main

import (
"context"
"fmt"
"os"

"github.com/jackc/pgx"
)

178 | Chapter 6: Application Design and Implementation

https://cockroa.ch/3j1GSjY

func main() {
if len(os.Args) < 2 {

fmt.Fprintln(os.Stderr, "Missing URL argument")
os.Exit(1)

}
uri := os.Args[1]
conn, err := pgx.Connect(context.Background(), uri)
if err != nil {

fmt.Fprintf(os.Stderr, "CockroachDB error: %v\n", err)
}
execSQL(*conn, "DROP TABLE IF EXISTS names")
execSQL(*conn, "CREATE TABLE names (name String PRIMARY KEY NOT NULL)")
execSQL(*conn, "INSERT INTO names(name) VALUES('Ben'),('Jesse'),('Guy')")

rows, err := conn.Query(context.Background(), "SELECT name FROM names")
if err != nil {

fmt.Fprintf(os.Stderr, "CockroachDB error: %v\n", err)
}
defer rows.Close()
for rows.Next() {

var name string
err = rows.Scan(&name)
fmt.Println(name)

}
}

func execSQL(conn pgx.Conn, sql string) {
result, err := conn.Exec(context.Background(), sql)
if err != nil {

fmt.Fprintf(os.Stderr, "CockroachDB error: %v\n", err)
os.Exit(1)

}
fmt.Fprintf(os.Stdout, "%v rows affected\n", result.RowsAffected())

}

We created the execSQL function in the Go example to modularize the repetitive
error checking involved in the initial SQL statements, though in production code, we
would perform error checking independently for each query.

Connection Pools
It’s often good practice to create small reusable routines to perform repetitive tasks.
If the service requires database access, then it might seem natural to supply each of
these routines with a dedicated connection. This has a clear advantage over a single
shared connection because it allows for concurrent requests. For instance, imagine
that we have a simple web service that we call whenever a new ride is commenced in
our Uber-busting ride-sharing app.

CockroachDB Programming | 179

We might code the database logic for it as follows:

async function newRide(city, riderId, vehicleId, startAddress) {
 const connection = new pg.Client(connectionString);
 await connection.connect();
 const sql = `INSERT INTO movr.rides
 (id, city,rider_id,vehicle_id,start_address,start_time)
 VALUES(gen_random_uuid(), $1,$2,$3,$4,now())`;
 await connection.query(sql, [city, riderId, vehicleId, startAddress]);
 await connection.end();
}

We don’t want to single-thread these requests, so we’ve given each call its own
connection. Unfortunately, creating a connection has a nontrivial overhead. When
the database access is simple, the time taken to create and dispose of the connection
might dominate overall response time. But we can’t run every request through the
same connection because that would restrict concurrent queries.

The solution is to use connection pools. A connection pool is a set of connections
that the application can reuse. You avoid the overhead of constantly creating and
destroying connections, and you can control the maximum amount of concurrency
hitting the database.

In Node.js, we’d create the pool as follows:

const pool = new pg.Pool({
 connectionString,
 max: 40
});

We now can change our routine so that it gets connections from the pool:

async function newRidePool(city, riderId, vehicleId, startAddress) {
 const connection = await pool.connect();
 const sql = `INSERT INTO movr.rides
 (id, city,rider_id,vehicle_id,start_address,start_time)
 VALUES(gen_random_uuid(), $1,$2,$3,$4,now())`;
 await connection.query(sql, [city, riderId, vehicleId, startAddress]);
 await connection.release();
}

Figure 6-1 illustrates how the two approaches compare for performance. With 40
concurrent requests, a connection pool implementation outperformed the unique
connection approach by about 700%. The benefit you get from connection pools
will vary depending on the amount of work performed in each connection and the
amount of concurrent activity that the application issues. However, it’s almost always
advisable to use a connection pool instead of a single connection used by all threads
or allocating each thread with its own transitory connection.

180 | Chapter 6: Application Design and Implementation

Figure 6-1. Using connection pools to improve concurrency

Connections in the pool can be broken by cluster topology changes or network
interruptions. It’s advisable to configure “keep alive” settings to periodically recheck
the connections. See the CockroachDB documentation (https://cockroa.ch/3Jch9jA)
for further details.

Connection Pools and Blocked Connections
Most connection pool implementations will block requests for new connections
if all the pooled connections are in use. Therefore, it’s important to configure
a sufficient number of connections in the pool for the anticipated concurrency.
The CockroachDB documentation (https://cockroa.ch/3DDo3NC) suggests configur‐
ing four connections for every core in the entire cluster. For instance, if you have
a three-node cluster with eight cores in each node, you might configure 3 × 8
× 4 = 96 connections. However, this is just a guideline—the optimal number will
depend heavily on the duration of each connection and the amount of idle time each
connection experiences as the application performs nondatabase tasks.

Bear in mind that the number of connections you determine should be shared across
all of the connection pools that you have configured. So, for example, if you have
calculated an ideal number of connections as 96, and you have 4 application servers,
then each of these application servers should have 24 connections (96 / 4).

It’s also critically important to release connections when not in use. For instance, in
the Node.js example, the connection.release() statement at the end of our function
is vital.

CockroachDB Programming | 181

https://cockroa.ch/3Jch9jA
https://cockroa.ch/3DDo3NC

In Java, there are a variety of connection pool options (https://cockroa.ch/3uOgUWO).
Here’s an example using the Hikari framework (https://cockroa.ch/3LwwKfw):

import com.zaxxer.hikari.*;
import java.sql.*;

public class ConnectionPoolDemo {

 public static void main(String[] args) {
 try {
 Class.forName("org.postgresql.Driver");
 String connectionURL = "jdbc:" + args[0];
 String userName = args[1];
 String passWord = args[2];

 HikariConfig config = new HikariConfig();
 config.setJdbcUrl(connectionURL);
 config.setUsername(userName);
 config.setPassword(passWord);
 config.addDataSourceProperty("ssl", "true");
 config.addDataSourceProperty("sslMode", "require");
 config.addDataSourceProperty("reWriteBatchedInserts", "true");
 config.setAutoCommit(false);
 config.setMaximumPoolSize(40);
 config.setIdleTimeout(3000);

 HikariDataSource hikariPool = new HikariDataSource(config);

This example creates a connection pool with 40 connections using arguments passed
in on the command line. Once the pool is created, a connection can be obtained from
the pool as follows:

Connection connection = hikariPool.getConnection();

In the Go pgx driver, we can use the pgxpool package to create and use a connection
pool:

ctx := context.Background()
config, err := pgxpool.ParseConfig(uri)
config.MaxConns = 40
pool, err := pgxpool.ConnectConfig(ctx, config)
defer pool.Close()

We can acquire a connection from the pool as follows:

connection, err := pool.Acquire(ctx)

The Python driver psycopg2 includes a built-in connection pool that we can easily
configure as follows:

import psycopg2
from psycopg2 import pool

182 | Chapter 6: Application Design and Implementation

https://cockroa.ch/3uOgUWO
https://cockroa.ch/3LwwKfw

def main():

 if ((len(sys.argv)) != 2):
 sys.exit("Error:No URL provided on command line")

 uri = sys.argv[1]
 pool = psycopg2.pool.ThreadedConnectionPool(10, 40, uri)
 # min connections = 10, max connections = 40

And we can connect to the pool as follows:

connection = pool.getconn()

Prepared and Parameterized Statements
Most SQL operations are parameterized—the same statement is run multiple times
with different input parameters. For instance, we might have a lookup program that
retrieves rider names for a specified ride ID as follows:

SELECT u.name FROM movr.rides r
 JOIN movr.users u ON (r.rider_id=u.id)
 WHERE r.id='ffc3c373-63ec-43fe-98ff-311f29424d8b'

We would, of course, execute this SQL many times, each time specifying a different
value for the ride ID.

When coding a generic lookup function, it seems natural enough to append the
parameter to the SQL statement using string concatenation. For example, in Java, we
might be tempted to do something like this:

private static String getRiderName(String riderId) throws SQLException {
Statement stmt = connection.createStatement();

String sql = " SELECT u.name FROM movr.rides r "
 + " JOIN movr.users u ON (r.rider_id=u.id) "
 + " WHERE r.id='"
 + riderId + "'";

ResultSet rs = stmt.executeQuery(sql);
rs.next();
return (rs.getString("name"));
}

However, as natural as this might seem, it represents an extremely poor practice that
has both performance and security downsides.

Most significantly, this code is vulnerable to SQL injection. For instance, imagine the
application could somehow be persuaded to pass the following string to the function:

riderName = getRiderName(
"ffc3c373-63ec-43fe-98ff-311f29424d8b' UNION
 select credit_card from movr.users order by 1,name 'n");

CockroachDB Programming | 183

The resulting SQL statement would become:

SELECT u.name FROM movr.rides r
 JOIN movr.users u ON (r.rider_id=u.id)
 WHERE r.id='ffc3c373-63ec-43fe-98ff-311f29424d8b'
 UNION select credit_card from movr.users order by 1,name

And the function would now return credit card numbers as well as rider names.

Of course, the application should prevent such a string from being entered at the UI
layer, but creating the vulnerability in the database code is poor practice. The solution
is to use prepared or parameterized statements. As in the preceding Java example, we
would declare a prepareStatement as follows:

getRiderStmt = connection.prepareStatement(
 "SELECT u.name FROM movr.rides r "
 + " JOIN movr.users u ON (r.rider_id=u.id) "
 + " WHERE r.id=?");

The “?” indicates a placeholder for a parameter (sometimes called a bind variable).
We can call the prepared statement by setting the parameter and executing the
statement:

getRiderStmt.setString(1, riderId);
ResultSet rs = getRiderStmt.executeQuery();
rs.next();
return (rs.getString("name"));

As well as avoiding SQL injection, prepareStatements generally execute faster,
because CockroachDB can more easily recognize the SQL as one that has already
been parsed and can avoid some of the overhead involved with examining what
would otherwise appear to be a brand-new statement.

Formally “preparing” statements is a Java practice. In other languages, it’s sufficient to
simply call a SQL statement with placeholders and provide the values in the call. For
instance, in JavaScript:

const sql = `SELECT u.name FROM movr.rides r
 JOIN movr.users u ON (r.rider_id=u.id)
 WHERE r.id=$1`;
const results = await connection.query(sql, ['ffc3c373-63ec-43fe-98ff...']);
console.log(results.rows[0].name);

In Python:

sql = """SELECT u.name FROM movr.rides r
 JOIN movr.users u ON (r.rider_id=u.id)
 WHERE r.id=%s"""
cursor.execute(sql,('ffc3c373-63ec-43fe-98ff-311f29424d8b',))
row=cursor.fetchone()
print(row[0])

184 | Chapter 6: Application Design and Implementation

And in Go:

sql := `SELECT u.name FROM movr.rides r
 JOIN movr.users u ON (r.rider_id=u.id)
 WHERE r.id=$1`
rows, err := conn.Query(ctx, sql, "ffc3c373-63ec-43fe-98ff-311f29424d8b")
rows.Next()
var name string
err = rows.Scan(&name)
fmt.Println(name)

Batch Inserts
It’s common for an application to insert multiple rows of data in a single logical
operation.

When you have an array of values to insert, it can seem natural to simply insert the
values in a loop, as in this Python example:

for value in arrayValues:
 cursor.execute("INSERT INTO insertTestP1(id,x,y) VALUES ($1,$2,$3)",value)

It’s inefficient to insert large amounts of data one row at a time—each insert will
require a network round trip, and there may be transactional implications if we want
all of the rows committed in a single transaction (because the single row inserts
will take longer, the chance of a transaction conflict and subsequent retries will be
magnified).

SQL allows multiple VALUES to be included in a single operation, such as:

INSERT INTO insertTest(id,x,y)
VALUES (3,'x',1) ,
 (4,'y',2) ,
 (5,'x',5)

So we could, if necessary, dynamically construct an INSERT statement to insert an
array of data in a single operation. For instance, in Python, the following code will
generate and execute an INSERT statement to insert an array of arbitrary length:

sql="INSERT INTO insertTestP(id,x,y) VALUES"
valueCount=0
for value in arrayValues:
 if valueCount>0:
 sql=sql+","
 sql=sql+"(%d,'%s',%d)" % value
 valueCount+=1
cursor.execute(sql)

CockroachDB Programming | 185

Note that this formulation is vulnerable to SQL injection. In the psycopg2 extras
package, there is an execute_values extras helper function that simplifies the coding
required and reduces the chance of SQL injection:

from psycopg2 import extras

<snip>

extras.execute_values(cursor,
 "INSERT INTO insertTestP1(id,x,y) VALUES %s",
 arrayValues)

The performance improvements obtained with batch inserts are dramatic. Figure 6-2
illustrates the improvement.

Figure 6-2. Improvement obtained by inserting rows in an array

JDBC includes addBatch and executeBatch methods that allow you to prepare
inserts one at a time and then submit all the inserted values in a single operation.
This avoids the need to concatenate a huge VALUES list and allows us to use formal
parameters. Here’s an example of the addBatch and executeBatch methods:

String sql="INSERT INTO insertTest(id,x,y) VALUES (?,?,?)";
PreparedStatement InsertStmt = connection.prepareStatement(sql);

for (int arrayIdx = 1; arrayIdx < arrayCount; arrayIdx++) {
 InsertStmt.setInt(1, idArray.get(arrayIdx));
 InsertStmt.setString(2, xArray.get(arrayIdx));
 InsertStmt.setInt(3, yArray.get(arrayIdx));
 InsertStmt.addBatch();
 }

InsertStmt.executeBatch();

186 | Chapter 6: Application Design and Implementation

We use setInt and setString methods to supply values to the prepared statement as
usual, but instead of executing, we use addBatch to add them to the batch of rows to
be inserted. When we are ready, we call executeBatch to add all the rows in a single
operation.

The JDBC addBatch method has minimal effect unless the reWriteBatchedInserts
property is set to true. You can set reWriteBatchedInserts when establishing a
connection:

Class.forName("org.postgresql.Driver");
String connectionURL = "jdbc:" + args[0];
String userName = args[1];
String passWord = args[2];
Properties props = new Properties();
props.setProperty("user", userName);
props.setProperty("password", passWord);
props.setProperty("reWriteBatchedInserts", "true");

Connection connection = DriverManager.getConnection(connectionURL, props);

If you’re a Spring developer, consider using JdbcTemplate. It wraps JDBC, making
your code easier to read and maintain.

The Node.js library does not include any direct support for batch inserts. However,
we can use the pg-format package to create SQL statements that contain multiple
VALUES from an array:

const pg = require('pg');
const format = require('pg-format');

async function main() {
 const connection = new pg.Client(connectionString);

 const sql = format('INSERT INTO insertTestP2(id,x,y) VALUES %L,
 arrayData);

 await connection.query(sql);

The Go pgx library provides a Batch type and a SendBatch method to use executing
batch operations:

batch := &pgx.Batch{}

for _, v := range arrayValues {
 batch.Queue(
 "INSERT INTO insertTest(id, x, y) VALUES ($1, $2, $3)",
 v.id, v.x, v.y,
)
}

results := db.SendBatch(context.Background(), batch)
defer results.Close()

CockroachDB Programming | 187

1 Note that the setFetchSize() call has no effect if setAutoCommit is set to true.

Pagination of Results
Some applications need to return data in batches. For instance, an online application
might want to return lists of information in pages—similar to the pages of results that
you might get from a Google search.

From a syntactic point of view, most of the drivers allow you to scroll through rows
one at a time. However, in many cases, you are still bringing the entire result set into
program memory before retrieving the first row. For example, the Python psycopg2
driver provides methods access to the entire result set (fetchall()), a selection
of rows (fetchmany()), or a single row (fetchone()). However, regardless of the
method called, the entire result set is always transferred from the database to the
application.

The JDBC driver supports client-side cursors that allow for data to be efficiently
pulled from the database in batches. The size of the batches is controlled by the
setFetchSize() method of the Statement object. By default, fetchSize is set to 0,
which results in all the rows being pulled into the application before the first row can
be processed.

We can adjust the fetchSize if we want to pull only a few rows in each batch as
follows:1

Statement stmt = connection.createStatement();
stmt.setFetchSize(100);
results = stmt
 .executeQuery("SELECT post_timestamp, summary "
 + " FROM blog_posts "
 + " ORDER BY post_timestamp DESC ");
for (int ri = 0; ri < 10; ri++) {
if (results.next())
 System.out.println(results.getString("SUMMARY"));
}

You don’t have to change your loop logic when you change setFetchSize(), but
under the hood the PostgreSQL driver will pull rows in batches of setFetchSize()
size. Figure 6-3 shows that this can be very effective if we want to optimize for
fetching the first few rows.

In Java, the fetchSize parameter gives us an adequate solution for pagination.
However, the other drivers either do not support effective client-side cursors or do so
in a way that results in some unnatural coding styles.

188 | Chapter 6: Application Design and Implementation

Figure 6-3. Reducing setFetchSize to improve fetch time for first rows

The recommended language-independent pattern for navigating pages of data is
referred to as “KeySet pagination.” However, before considering this technique, let’s
look at a “natural” solution that has very poor performance characteristics.

Let’s suppose that we are returning pages of blog posts from the following query:

SELECT post_timestamp, summary
 FROM blog_posts ORDER BY post_timestamp DESC

We have a covering index on POST_TIMESTAMP, and this index stores the summary
column, so we can retrieve rows efficiently in order. We want to create some code to
display blog posts in order of posting, with a certain number of posts per “page.”

SQL supports OFFSET and LIMIT functions, allowing us to jump ahead and to limit
the number of rows returned. This might seem an ideal solution for pagination; we
can use the OFFSET to jump to the page we want and LIMIT to restrict the number of
results to just that page. In Python, we might code this as follows:

def getPage(startIndex,nEntries):
 # Don’t do this!
 cursor=connection.cursor()
 sql="""SELECT post_timestamp, summary
 FROM blog_posts ORDER BY post_timestamp DESC
 OFFSET %s LIMIT %s"""
 cursor.execute(sql,(startIndex,nEntries))
 return cursor.fetchall()

CockroachDB Programming | 189

The problem with this approach is that OFFSET requires us to process all of the data
up to and including the first row of interest. So, for instance, if we specify an offset
of one million, we have to retrieve and discard all the data prior to the one-millionth
row. Each page will take longer to retrieve than the last.

The correct method is to move through the result set in key order so that we can
efficiently retrieve the rows using index ranges. Of course, this approach absolutely
requires that we have an index on the WHERE clause condition, and ideally, this index
should be a covering index that includes the SELECT list columns as well. So our
Python method would look like this:

def getPageKeySet(startTimeStamp,nEntries):
 cursor=connection.cursor()
 sql="""SELECT post_timestamp, summary
 FROM blog_posts
 WHERE post_timestamp< %s
 ORDER BY post_timestamp DESC
 LIMIT %s"""
 cursor.execute(sql,(startTimeStamp,nEntries))
 return cursor.fetchall()

We would need to track the oldest blog timestamp from each page retrieved and
forward that to the next invocation of the method.

In some circumstances, it might be important to ensure that the pages of data are
consistent. Since each invocation of the method occurs at a different time, each “page”
of data will reflect the database at a different time. If this is a concern, then AS OF
SYSTEM TIME can be used to ensure that each page of data reflects the state of the
database as of a specific time:

def getPageKeySetST(startTimeStamp,nEntries,systemTime):
 cursor=connection.cursor()
 sql="""SELECT post_timestamp, summary
 FROM blog_posts
 AS OF SYSTEM TIME %s
 WHERE post_timestamp< %s
 ORDER BY post_timestamp DESC
 LIMIT %s
 """
 cursor.execute(sql,(systemTime,startTimeStamp,nEntries))
 return cursor.fetchall()

Figure 6-4 illustrates how the use of OFFSET and LIMIT results in increasing overhead
as we retrieve each page of information. In contrast, the KeySet pagination pattern
returns each page in the same amount of time.

190 | Chapter 6: Application Design and Implementation

Figure 6-4. KeySet pagination provides better scalability than OFFSET/LIMIT

Projections
In relational database parlance, “projection” refers to the selection of a subset of
columns from a table (or attributes from an entity). In practice, a projection is
represented by the list of columns in a SELECT clause.

While SELECT accepts a wildcard projection (*), this should almost never be used
in production code because it results in unnecessary transport of columns from the
database to the application. Using * can seem like a handy programming shortcut,
but it can have severe performance penalties when processing large result sets. Fur‐
thermore, it can cause errors if the structure of the table is changed.

For instance, let’s say we are retrieving a list of user IDs and blog post dates to
populate a dashboard or to perform some other real-time diagnostic. The following
code might seem acceptable:

ResultSet results = stmt.executeQuery(
 "SELECT * FROM blog_posts");
while (results.next()) {
 java.sql.Timestamp postTimestamp =
 results.getTimestamp("POST_TIMESTAMP");
 Integer userid = results.getInt("USERID");
 plotPost(userid, postTimestamp);
}

However, a couple of coding seconds saved in omitting the column names costs the
application dearly. Every time this code is executed, it retrieves not only the user
ID and timestamp but also the potentially very large blog post text. As a result,

CockroachDB Programming | 191

each network packet can hold less data, and the number of network round trips is
magnified. If we add a projection:

results = stmt.executeQuery("""
 SELECT userid, post_timestamp
 FROM blog_posts
 """
);

then elapsed time is reduced dramatically. Figure 6-5 illustrates the elapsed time
savings for a 10-million row result set from a remote cluster.

Of course, the absolute time saved will depend on the total row size versus the size
of the projection and the network latency between the application and the server.
Furthermore, this degradation only kicks in when we pull more rows from the data‐
base than can fit in a single network packet. For single-row retrievals, the overhead is
negligible.

Figure 6-5. Improvement obtained by adding a projection to a query

Client-Side Caching
The best way to optimize a database request is to not send it at all. No matter
how carefully we optimize the database—adding indexes, memory, fast disks, etc.—
database requests are blocking operations that can never be made as fast as local
computation. For most applications, database accesses are the slowest operations
performed and the most critical component of application response time.

One of the most effective ways of avoiding unnecessary database calls is to cache fre‐
quently accessed static data in application code. Avoid asking the database repeatedly
for the same data unless there’s a chance that the data will change.

192 | Chapter 6: Application Design and Implementation

For instance, let’s say that we have a function to return a user’s name given a userId:

func getUserName(userId string) string {
 conn, err := pool.Acquire(context.Background())
 defer conn.Release()
 if err != nil {
 fmt.Fprintf(os.Stderr, "CockroachDB error: %v\n", err)
 }
 sql := `SELECT name FROM movr.users WHERE id=$1`
 rows, err := conn.Query(context.Background(), sql, userId)
 defer rows.Close()
 if err != nil {
 fmt.Fprintf(os.Stderr, "CockroachDB error: %v\n", err)
 }
 if !rows.Next() {
 return "Invalid userId"
 } else {
 var name string
 rows.Scan(&name)
 return (name)
 }
}

It’s relatively simple to extend this function with a client-side cache. We just need to
declare and initialize a map structure:

var userCache map[string]string

userCache = make(map[string]string)

Now in our function, we check this map to see if we can find the user’s name. Only if
the name does not exist in the cache do we go to the database:

func getCachedUserName(userId string) string {

 name, nameFound := userCache[userId]
 if !nameFound {
 conn, err := pool.Acquire(context.Background())
 defer conn.Release()
 if err != nil {
 fmt.Fprintf(os.Stderr, "CockroachDB error: %v\n", err)
 }
 fmt.Println("cache miss")
 sql := `SELECT name FROM movr.users WHERE id=$1`
 rows, err := conn.Query(context.Background(), sql, userId)
 defer rows.Close()
 if err != nil {
 fmt.Fprintf(os.Stderr, "CockroachDB error: %v\n", err)
 }
 if !rows.Next() {
 return "Invalid userId"
 } else {
 rows.Scan(&name)

CockroachDB Programming | 193

 userCache[userId] = name
 }
 }
 return (name)
}

The performance improvements obtained by not going to the database are greater
than any tuning of the database accesses themselves, since we can never make a
database access a zero-cost activity. However, bear in mind the following:

• Caches consume memory on the client program. In many environments, mem‐•
ory is abundant, and the tables considered for caching are relatively small. How‐
ever, for large tables and memory-constrained environments, the implementation
of a caching strategy could actually degrade performance by contributing to
memory shortages in the application layer or client.

• If the table being cached is updated during program execution, then the changes•
may not be reflected in your cache unless you implement some sophisticated
synchronization mechanism. For this reason, local caching is best performed on
static tables.

Managing Transactions
Transactions provide an important mechanism for ensuring that related modifica‐
tions succeed or fail as a unit. We discussed the internals of CockroachDB transac‐
tions back in Chapter 2.

The basics of programming transactions are common across a wide variety of SQL
databases and even some non-SQL systems. A transaction is commenced with a
BEGIN statement. Multiple SQL statements are executed within the transaction scope,
and then all the changes are made permanent with the COMMIT statement. If an error
is encountered during the transaction, all of the transaction’s work can be abandoned
with a ROLLBACK statement.

Example 6-1 shows a relatively simple transaction—implemented in Node.js—that
transfers money from one account to another, after first checking that there are
sufficient funds.

Example 6-1. Example of a simple transaction

try {
 await connection.query('BEGIN TRANSACTION');
 // Check for sufficient funds
 const results = await connection.query(
 'SELECT balance FROM accounts WHERE id=$1',
 [fromId]
);

194 | Chapter 6: Application Design and Implementation

2 See the Cockroach documentation (https://cockroa.ch/3u5fzeX) for a complete discussion.

 const fromBalance = results.rows[0].balance;
 if (fromBalance < transferAmt) {
 throw Error('Insufficient funds');
 }
 // Transfer the money
 await connection.query(`UPDATE accounts SET balance=balance-$1
 WHERE id=$2`,
 [transferAmt, fromId]);
 await connection.query(`UPDATE accounts SET balance=balance+$1
 WHERE id=$2`,
 [transferAmt, toId]);
 await connection.query('COMMIT');
 success = true;
} catch (error) {
 console.error(error.message);
 connection.query('ROLLBACK');
 success = false;
}

If you run this code in parallel, you’ll find that some percentage of the transactions
fail with an error something like this:

restart transaction: TransactionRetryWithProtoRefreshError:
 WriteTooOldError: write at timestamp 16412

Transaction Retry Errors
In databases that default to lower levels of transaction isolation (PostgreSQL, for
instance), this transaction would almost always succeed, perhaps failing only if there
was a database outage. However, when using SERIALIZABLE transaction isolation
(which is the default in CockroachDB and an option in other databases), there is
a good chance of transaction failure. If a concurrent transaction modifies the same
table row between the time our transaction commences and the time we attempt
to modify that row, then we will encounter a TransactionRetryWithProtoRefresh
Error: WriteTooOldError (we’ll call this a transaction retry error for the sake of
brevity).

Types of Transaction Retry Errors
The WriteTooOldError type of transaction retry is one of a family of errors—includ‐
ing RETRY_SERIALIZABLE and others that indicate that a retry can and probably
should be attempted. While the various errors have different—and sometimes quite
complex—underlying causes,2 they all issue the same 40001 error code.

Managing Transactions | 195

https://cockroa.ch/3u5fzeX

3 The simulation ran 100 concurrent threads randomly executing a transaction 10 times per second.

Figure 6-6 illustrates a possible sequence of events in two concurrent transactions
that would lead to a transaction retry error.

The chance of receiving a transaction retry error depends on the chance of two
transactions colliding on the same row. In one test, the percentage of retries varied
from fewer than 1% if there were 10,000 distinct accounts involved to more than 75%
when there were just 10 accounts.3

However, whatever the probability of encountering a transaction retry error, the pos‐
sibility exists, and your application code should be able to cope with these expected
error scenarios.

Figure 6-6. Transaction retry error scenario

When running CockroachDB with READ COMMITTED isolation, transaction retries
resulting from serialization errors do not need to be handled by application code.
Lock contention will still affect transactions vying for the same data, but rather than
immediately receiving a retry error, a transaction will wait. This behavior can be
seen in Figure 6-7, where two transactions seek to update the same row. Instead of
encountering a transaction retry error as before, Session 2 will unblock once Session
1 commits.

196 | Chapter 6: Application Design and Implementation

Figure 6-7. Transaction retry scenario under READ COMMITTED isolation

Implementing Transaction Retries
The relatively obvious way to handle retry errors is to do exactly what the error code
suggests—retry the transaction. When the transaction retry error is encountered,
issue a ROLLBACK command to discard the work done so far in the transaction and
try the transaction again. In the following example, we add some logic to the Node.js
method in Example 6-1 to retry the transaction when necessary:

let retryCount = 0;
let transactionEnd = false;
while (!transactionEnd) {
 if (retryCount++ >= maxRetries) {
 throw Error('Maximum retry count exceeded');
 }
 try {
 await connection.query('BEGIN TRANSACTION');
 // Check for sufficient funds
 const results = await connection.query(
 'SELECT balance FROM accounts where id=$1',
 [fromId]
);
 const fromBalance = results.rows[0].balance;
 if (fromBalance < transferAmt) {
 throw Error('Insufficient funds');
 }
 // Transfer the money
 await connection.query(
 `UPDATE accounts SET balance=balance-$1
 WHERE id=$2`,

Managing Transactions | 197

4 See the Cockroach documentation (https://cockroa.ch/3uQ1Tny) for a generic implementation.

 [transferAmt, fromId]
);
 await connection.query(
 `UPDATE accounts SET balance=balance+$1
 WHERE id=$2`,
 [transferAmt, toId]
);
 await connection.query('COMMIT');
 success = true;
 console.log('success');
 } catch (error) {
 if (error.code == '40001') { // Transaction retry error
 console.log(error.code, retryCount);
 connection.query('ROLLBACK');
 // Exponential backoff
 const sleepTime = (2 ** retryCount) * 100
 + Math.ceil(Math.random() * 100);
 await sleep(sleepTime);
 } else {
 console.log('aborted ', error.message);
 transactionEnd = true;
 }
 }
}

If this method encounters an error 40001—the retry transaction code—it issues a
ROLLBACK, waits for a short time, and then tries the transaction again.

In this implementation, the sleep time increases exponentially as the number of
retries increases. This is done to avoid a situation in which transactions “thrash”
on a resource. This exponential backoff strategy tends to reduce the load on a busy
system, but it can result in some high transaction waits for “unlucky” transactions.
Furthermore, when we retry transactions, there is no guarantee that updates will
succeed in the order in which they were originally submitted. Transactions that were
submitted first may succeed only after transactions that were submitted at a later time
commit.

Automatic Transaction Retries
The logic shown in the previous section can be implemented in any language.4

However, some drivers implement this logic for you transparently:

• If a single statement that returns less than 16 KB of output (a single UPDATE,•
for instance, with no RETURNS clause) encounters a 40001, then CockroachDB
will automatically retry the statement with no intervention required on your
part. This logic applies to both implicit transactions (without a BEGIN statement)

198 | Chapter 6: Application Design and Implementation

https://cockroa.ch/3uQ1Tny

and explicit transactions with only a single statement. The retries will continue
indefinitely unless the session variable statement_timeout is specified.

• The Go DBTools library includes a transaction retry handler for Go transactions.•
You pass a set of operations to the transaction handler, which will automatically
retry transactions with a configurable retry limit and delay (https://cockroa.ch/
3x3F8PM). The cockroach-go (https://cockroa.ch/3K7HXmw) project contains
similar helper functions maintained by the CockroachDB team.

• Many object-relational mapping frameworks—SQLAlchemy for Python, for•
instance—will automatically retry transactions for you transparently. See the
CockroachDB documentation (https://cockroa.ch/3r3D0DL) for further details.

Why Can’t CockroachDB Handle All Transaction Retries?
Coding for transaction retries can seem tedious. Since CockroachDB retries transac‐
tions automatically in some circumstances, why can’t CockroachDB handle all retries
automatically?

The short answer is that in many circumstances CockroachDB cannot determine
the logical connection between different statements in a transaction. For instance,
in Example 6-1, CockroachDB cannot know how the SELECT statement before the
UPDATEs might affect the UPDATE logic. Only when the transaction is completely
unambiguous—which only really happens when there’s just a single statement in the
transaction—can CockroachDB safely perform a retry.

Using FOR UPDATE to Avoid Transaction Retry Errors
Performing transaction retries has some significant downsides. First, they are waste‐
ful since work in the transaction that is done before the retry is discarded. Second,
they introduce a delay in transaction processing that is unpredictable or even unnec‐
essary. It’s hard to know how long to sleep between transaction retries, and expo‐
nential backoffs can lead to some extreme waits. Finally, transaction retries result
in nondeterministic behaviors. Transactions will not necessarily be applied to the
database in the order in which they are submitted by the application; even under
identical workloads, differences in outcomes will be observed.

The alternative to the transaction retry approach is to “lock” the rows required at the
beginning of the transaction with a FOR UPDATE statement. FOR UPDATE is a blocking
statement, and once it returns, your transaction has the update rights over the rows
concerned.

Managing Transactions | 199

https://cockroa.ch/3x3F8PM
https://cockroa.ch/3K7HXmw
https://cockroa.ch/3r3D0DL

Here’s our sample code with the FOR UPDATE logic:

try {
 await connection.query('BEGIN TRANSACTION');
 // Check for sufficient funds (and lock row)
 const results = await connection.query(
 `SELECT balance FROM accounts where id=$1
 FOR UPDATE`,
 [fromId]
);
 const fromBalance = results.rows[0].balance;
 if (fromBalance < transferAmt) {
 throw Error('Insufficient funds');
 }
 // Lock second row
 await connection.query(
 `SELECT balance FROM accounts where id=$1
 FOR UPDATE`,
 [toId]
);
 // Transfer the money
 await connection.query(
 `UPDATE accounts SET balance=balance-$1
 WHERE id=$2`,
 [transferAmt, fromId]
);
 await connection.query(
 `UPDATE accounts SET balance=balance+$1
 WHERE id=$2`,
 [transferAmt, toId]
);
 await connection.query('COMMIT');
 success = true;
 console.log('success');
} catch (error) {
 console.error(error.message);
 connection.query('ROLLBACK');
 success = false;
}

By locking the ACCOUNTS rows with FOR UPDATE before actually issuing UPDATE
statements, we avoid any chance of a transaction retry being issued. However, in
a production implementation, it is probably advisable to include a transaction retry
error handler in any transaction, even one that attempts to avoid a retry using FOR
UPDATE, because retry errors can still occur due to clock synchronization or other
issues. For instance, the preceding code is vulnerable to a deadlock condition if
simultaneous transfers between two accounts in opposite directions collide—we’ll
look more at deadlocks in a couple of pages.

200 | Chapter 6: Application Design and Implementation

Optimistic Versus Pessimistic Transaction Design
The two patterns for transactions we’ve looked at here—retry handling versus FOR
UPDATE locking—have historically been referred to as optimistic and pessimistic trans‐
action models.

In the optimistic transaction model, we feel it is unlikely that there will be a conflict‐
ing update that will cause a transaction to abort. Therefore, we don’t “pre-lock” data
and rely on transaction retries to handle any conflicts that might occur.

In the pessimistic model, we are quite worried about transaction conflicts, so we
preemptively lock rows that might come into conflict.

Neither model is superior—it really does depend on how likely row-level transaction
conflicts are. Don’t choose one or the other based on your emotional disposition.
Think carefully about the likelihood of conflicts—benchmark if necessary—and act
accordingly.

Reducing Contention by Eliminating Hot Rows
The most significant cause of transaction retries is contention for a small number
of “hot” rows. Hot rows are those that are frequently changed by multiple database
sessions. Hot rows often indicate design flaws in the data model. For instance, if we
decided to maintain running totals of account transfers per day, we might end up
updating a single row after every transaction.

The use of embedded arrays or JSON data types can also create these sorts of issues.
For example, it might seem convenient to maintain an array of measurements in a
JSON document:

SELECT * FROM latest_measurements;

{
 "measurements": [{
 "locationid": "8a90ec6e-370a-4f90-bdc7-2f4bcdd381c2",
 "measurement": "32.6933968058154"
 }, {
 "locationid": "ccc240a0-3322-4a02-9538-23e0d98a39e5",
 "measurement": "1.1379426982748297"
 }, {
 "locationid": "15f41b26-f1a7-4d35-a88b-9f6bce022c7b",
 "measurement": "39.21261847039683"
 }, <snip>
 {
 "locationid": "f9b422d5-e9fd-44e7-8db3-35a243e45a95",
 "measurement": "25.66958037632363"
 }, {
 "locationid": "abdd31e7-b553-4798-896d-be492b11dbf1",

Managing Transactions | 201

 "measurement": "41.09557231178944"
 }]
}

This design might result in quick retrieval time but has now created a super hotspot.
Keeping every location in its own row would be superior. Remember—denormaliza‐
tion should generally serve the goal of improving performance; beware of denormali‐
zations that actually reduce throughput.

Reducing Transaction Elapsed Time
The longer a transaction runs, the greater the chance of contention with another
transaction. Therefore, you should always move any time-consuming application
logic—and certainly any human intervention—outside of the transaction. The code
between the BEGIN and COMMIT (or ROLLBACK) statements should include only code
critical to the transaction itself. For instance, the following is a variation on the
transaction originally introduced in Example 6-1:

await connection.query('BEGIN TRANSACTION');
// Check for sufficient funds (and lock row)
const results = await connection.query(
 `SELECT balance FROM accounts where id=$1
 FOR UPDATE`,
 [fromId]
);
const fromBalance = results.rows[0].balance;
if (fromBalance < transferAmt) {
 throw Error('Insufficient funds');
}
// Lock second row
await connection.query(
 `SELECT balance FROM accounts where id=$1
 FOR UPDATE`,
 [toId]
);

// Perform anti-money laundering check
await performAMLCheckViaRESTCall(txnDetails);

// Transfer the money
await connection.query(
 `UPDATE accounts SET balance=balance-$1
 WHERE id=$2`,
 [transferAmt, fromId]
);
await connection.query(
 `UPDATE accounts SET balance=balance+$1
 WHERE id=$2`,
 [transferAmt, toId]
);
await connection.query('COMMIT');

202 | Chapter 6: Application Design and Implementation

The performAMLCheckViaRESTCall() performs an anti-money-laundering (AML)
check via a REST call—which might take a few seconds in the worst-case scenario.
We issued this call after issuing a FOR UPDATE statement. While this might make sense
from a logical point of view (not checking with the AML authorities until we are
sure the transaction will go through), the extra duration of the FOR UPDATE locks will
reduce throughput significantly. It would be better from a performance point of view
to perform the AML check before commencing the transaction.

A similar effect can occur in retry logic. If unnecessary time-consuming statements
occur within a transaction with retry logic, then the chance of a retry is increased
with a consequent decrease in throughput.

Reordering Statements
The ordering of DML statements within a transaction can have a big impact on
contention. Generally, the statement most likely to involve contention should be
placed first in the transaction sequence. Placing the contentious statement first has
several good implications:

• CockroachDB can automatically retry the first statement in a transaction trans‐•
parently, without requiring explicit handling.

• If the transaction fails, it will fail before the execution of other statements. The•
execution and rollback of these other statements will involve overhead on the
server.

Although the impact of the reordering statement will vary from case to case, in
general, moving the most contentious statements earlier in the transaction sequence
will be worthwhile.

Time Travel Queries
If a transaction attempts to read data that has a higher timestamp than the transac‐
tion start time, then a retry error will occur. For read operations, we can avoid these
errors by using AS OF SYSTEM TIME.

This can be particularly important for read-only transactions in which you want
consistent results from multiple SELECT statements but don’t need these results to be
completely up-to-date with respect to the system time. You can include the AS OF
SYSTEM TIME in a SELECT statement or in a BEGIN statement. If included in the BEGIN
statement, then the transaction is a read-only transaction with read consistency as of
the timestamp provided.

Managing Transactions | 203

For instance, here we read from rides and user_ride_counts consistently. Without
the AS OF SYSTEM TIME clause, a concurrent write to rides or user_ride_counts
might cause the transaction to fail:

cursor.execute("BEGIN AS OF SYSTEM TIME '-10s'")
top10cities=cursor.execute('''SELECT city,count(*)
 FROM movr.rides GROUP BY city
 ORDER BY 2 DESC LIMIT 10''')
top10users=cursor.execute('''SELECT name, rides
 FROM movr.user_ride_counts
 ORDER BY rides DESC LIMIT 10''')
cursor.execute('COMMIT')

Ambiguous Transactions Errors
In a distributed system, some errors can have ambiguous results. For example, if you
receive a connection closed error while processing a COMMIT statement, you cannot
tell whether the transaction was successfully committed or not. These errors are
possible in any database, but CockroachDB is somewhat more likely to produce them
because ambiguous results can be caused by failures between cluster nodes. These
errors are reported with the PostgreSQL error code 40003(statement_completion
_unknown).

Ambiguous errors can be caused by nodes crashing, network failures, or timeouts.
Note that ambiguity is possible for only the last statement of a transaction (COMMIT
or RELEASE SAVEPOINT) or for statements outside a transaction. If a connection drops
during a transaction that has not yet tried to commit, the transaction will definitely
be aborted.

In general, you should handle ambiguous errors the same way as connection closed
errors. If your transaction is idempotent—capable of being executed multiple times
with the same result—it’s safe to retry it on ambiguous errors. UPSERT operations are
typically idempotent (providing there are no dynamically allocated column values),
and other transactions can be written to be idempotent by verifying the expected state
before performing any writes. Increment operations such as UPDATE my_table SET
x=x+1 WHERE id=$1 are typical examples of operations that cannot easily be made
idempotent. For a detailed discussion of idempotency keys, see @brandur’s blog post
(https://cockroa.ch/3JeOtqo).

If your transaction is not idempotent, then you should decide to retry based on
whether it would be better for your application to apply the transaction twice or
return an error to the user.

204 | Chapter 6: Application Design and Implementation

https://cockroa.ch/3JeOtqo

Deadlocks
Transaction retry errors can also occur with FOR UPDATE if two sessions lock
resources required by the other. For instance, in Figure 6-8, we see that two sessions
have each locked resources that are required by the other. Session 1 has a lock on
id=1 and wants to lock id=2. Session 2 has a lock on id=2 and wants to lock id=1.
This situation can never resolve, so CockroachDB will terminate one of the sessions,
and that session will have to retry the transaction.

Figure 6-8. Deadlocks occur when two sessions each lock a resource required by the other

Deadlocks are less likely if transactions always lock resources in a specific order.
However, we cannot be completely sure that a deadlock will never occur in a complex
application. The solution is to ensure that all critical transactions have retry logic.

If the transactions in a deadlock scenario have different priorities, CockroachDB
allows the transaction with higher priority to abort the other, which must then retry.
If the transactions have the same priority, one is selected randomly to abort.

Transaction Priorities
Transactions can be associated with priorities, and—in the event of a conflict—
a higher-priority transaction will be favored over a lower-priority transaction.

Managing Transactions | 205

Adjusting transaction priorities can ensure that critical transactions don’t get blocked
by lower-priority work. However, these decisions should be made very deliberately.
It’s possible for a lower-priority transaction to be deferred indefinitely on a busy
system, which might be more undesirable than a delay for the high-priority workload.

Transaction priorities can be set using the SET TRANSACTION command. By default, all
transactions have the NORMAL priority.

Summary of Transaction Approaches
We’ve looked at a lot of transaction execution patterns, and you may be feeling that
the “correct” way to program a CockroachDB transaction is not clear. Fair enough—
there is indeed more than one way to do it. However, the following guidelines are
generally applicable:

• Your critical transactions should include some form of retry logic. Even if you•
avoid retry errors using every technique we have explored, there’s still a chance of
a retry error due to contention on internal resources.

• Transactions should be kept as short in scope and duration as possible. Any•
statement that is not needed within the transaction should be moved out of
scope.

• The DML most likely to cause a conflict should be placed first in the transaction.•
• If preserving order in the queue is important, use the FOR UPDATE statement to•

lock resources before modifying them. This pessimistic locking pattern will not
always be faster, but it will tend to ensure that transactions get processed in the
order in which they are received.

• For read-only transactions, consider performing “time travel” queries with AS OF•
SYSTEM TIME to avoid transaction retries.

• When possible, batching all the SQL statements in the transaction into a single•
request can improve performance and simplify retry logic. Be mindful of the
possibility of SQL injection in these batched routines.

Working with ORM Frameworks
Object-relational mapping (ORM) frameworks automate the mapping of program
objects to relational structures and reduce or eliminate the need to use SQL language
instructions in program code.

ORMs are popular because they reduce code complexity and relieve the developer
from the need to manually determine the way in which object-oriented program
artifacts map to relational tables. On the other hand, ORMs sometimes reduce

206 | Chapter 6: Application Design and Implementation

the flexibility provided by a relational database and can result in less-than-optimal
performance.

Since the ORM layer is on top of the SQL layer and since the CockroachDB SQL layer
is PostgreSQL-compatible, most PostgreSQL ORMs will work with CockroachDB
without modification. In some cases, the CockroachDB team has worked with the
ORM maintainer to ensure compatibility with CockroachDB. You can see a list of
supported ORMs in the CockroachDB documentation (https://cockroa.ch/3j6S8fb),
together with instructions on installing any necessary CockroachDB prerequisites.

Table 6-1 summarizes some of the ORM framework options for CockroachDB.

Table 6-1. Object-relational mapping systems for CockroachDB

Go Java Python JavaScript Ruby
GORM Hibernate SQLAlchemy Knex.js ActiveRecord

go-pg jOOQ Django Prisma

upper/db MyBatis peewee Sequelize

TypeORM

We don’t have space to explore all the options for using the various ORMs, and there
are plenty of examples within the CockroachDB documentation. But let’s review the
essential workflow using one of the original ORMs: Hibernate for Java.

The code in this section is borrowed from the CockroachDB Hibernate example on
GitHub (https://cockroa.ch/3u7kGLP).

The Hibernate configuration is stored in an XML file and tells Hibernate how to
connect to the backend database and which SQL language dialect to use. The follow‐
ing configuration file tells Hibernate to use the PostgreSQL driver and provides the
connection URL, username, and password:

<hibernate-configuration>
 <session-factory>
 <!-- Database connection settings -->
 <property name="hibernate.connection.driver_class">
org.postgresql.Driver</property>
 <property name="hibernate.dialect">
org.hibernate.dialect.CockroachDB201Dialect</property>
 <property name="hibernate.connection.url">
jdbc:postgresql://localhost:26257/bank?ssl=true&sslmode=require</property>
 <property name="hibernate.connection.username">maxroach</property>
 <property name="hibernate.connection.password">password</property>
 <property name="hibernate.hbm2ddl.auto">create-drop</property>
 </session-factory>
</hibernate-configuration>

Working with ORM Frameworks | 207

https://cockroa.ch/3j6S8fb
https://cockroa.ch/3u7kGLP
https://cockroa.ch/3u7kGLP

Note the property hibernate.dialect is set to org.hibernate.dialect

.CockroachDB201Dialect; this should correspond to the version of CockroachDB
being connected to.

In the user code, we create classes that map to database tables and methods within
those classes that define operations that can be performed on those tables. For
example, here we create an Accounts class. Annotations tell Hibernate that this class
will map to the accounts table:

@Entity
@Table(name = "accounts")
public static class Account {
 @Id
 @Column(name = "id")
 public long id;
 public long getId() {
 return id;
 }
 @Column(name = "balance")
 public BigDecimal balance;
 public BigDecimal getBalance() {
 return balance;
 }
 public void setBalance(BigDecimal newBalance) {
 this.balance = newBalance;
 }
 // Convenience constructor.
 public Account(int id, int balance) {
 this.id = id;
 this.balance = BigDecimal.valueOf(balance);
 }
 // Hibernate needs a default constructor to create model objects.
 public Account() {
 }
}

We can now write functions that manipulate the database by using these Hibernate
methods without writing SQL code:

private static Function<Session, BigDecimal> transferFunds
 (long fromId, long toId, BigDecimal amount) throws JDBCException {
 Function<Session, BigDecimal> f = s -> {
 BigDecimal rv = new BigDecimal(0);
 try {
 Account fromAccount = (Account) s.get(Account.class, fromId);
 Account toAccount = (Account) s.get(Account.class, toId);
 if (!(amount.compareTo(fromAccount.getBalance()) > 0)) {
 fromAccount.balance = fromAccount.balance.subtract(amount);
 toAccount.balance = toAccount.balance.add(amount);
 s.save(fromAccount);
 s.save(toAccount);
 rv = amount;

208 | Chapter 6: Application Design and Implementation

 System.out.printf(
 "APP: transferFunds(%d, %d, %.2f) --> %.2f\n",
 fromId, toId, amount, rv);
 }
 } catch (JDBCException e) {
 throw e;
 }
 return rv;
 };
 return f;
}

This code is fairly standard Hibernate code that would work on almost any SQL
database. However, as we’ve seen, CockroachDB does have some unique transactional
behaviors, and these may need to be accounted for in a nontrivial application. In the
Java Hibernate example, the CockroachDB team defined a runTransaction method.
It takes as its argument a function containing commands that might trigger a retry
Transaction error. The method retries the transaction using the exponential backoff
strategy shown in Figure 6-6:

private static BigDecimal runTransaction(
 Session session,
 Function<Session, BigDecimal> fn) {
 BigDecimal rv = new BigDecimal(0);
 int attemptCount = 0;
 while (attemptCount < MAX_ATTEMPT_COUNT) {
 attemptCount++;
 if (attemptCount > 1) {
 System.out.printf(
 "APP: Entering retry loop again, iteration %d\n",
 attemptCount);
 }
 Transaction txn = session.beginTransaction();
 System.out.printf("APP: BEGIN;\n");
 if (attemptCount == MAX_ATTEMPT_COUNT) {
 String err = String.format("hit max of %s attempts, aborting",
 MAX_ATTEMPT_COUNT);
 throw new RuntimeException(err);
 }
 try {
 rv = fn.apply(session);
 if (!rv.equals(-1)) {
 txn.commit();
 System.out.printf("APP: COMMIT;\n");
 break;
 }
 } catch (JDBCException e) {
 if (RETRY_SQL_STATE.equals(e.getSQLState())) {
 // Exponential backoff
 System.out.printf("APP: retryable exception occurred:\n sql
state = [%s]\n message = [%s]\n retry counter = %s\n", e.getSQLState(),

Working with ORM Frameworks | 209

e.getMessage(), attemptCount);
 System.out.printf("APP: ROLLBACK;\n");
 txn.rollback();
 int sleepMillis = (int) (Math.pow(2, attemptCount) * 100) +
 RAND.nextInt(100);
 System.out.printf("APP: Hit 40001 transaction retry error,
sleeping %s milliseconds\n", sleepMillis);
 try {
 Thread.sleep(sleepMillis);
 } catch (InterruptedException ignored) {
 // no-op
 }
 rv = BigDecimal.valueOf(-1);
 } else {
 throw e;
 }
 }
 }
 return rv;
}

Each ORM framework has its own approach to configuration and coding, but the
general practices are similar. Table 6-2 summarizes your options.

Table 6-2. Options for retrying transactions in ORMs

Language/ORM Retry transaction procedure
SQLAlchemy Use the sqlalchemy_cockroachdb.run_transaction() method

Django (https://cockroa.ch/3NLktWo) Define a transaction retry loop in the decorator function

GORM (https://cockroa.ch/3x3sdgE) Wrap the function call in crdbgorm.ExecuteTx()

pgx (https://cockroa.ch/3zerD2X) Wrap the function call in crdbpgx.ExecuteTx()

Java (https://cockroa.ch/3u6MGz5) Use the runTransaction() method

Row-Level TTL
In many industries, companies are required to keep data for a period of time before
it can be deleted. Unless you have a compelling reason to keep every row of data
forever, it’s likely that at some point, you’ll want or need to archive or delete old data.

CockroachDB’s built-in row-level TTL allows you to declaratively delete data from
tables when certain criteria are met. In this section, we’ll harness row-level TTL to
expire data for us, eliminating the need for manual deletion or specialized code.

First, we’ll create a cluster:

cockroach demo --insecure --no-example-database

210 | Chapter 6: Application Design and Implementation

https://cockroa.ch/3NLktWo
https://cockroa.ch/3x3sdgE
https://cockroa.ch/3zerD2X
https://cockroa.ch/3u6MGz5

Let’s assume we’re an ecommerce business and our customers add products to baskets
before checking out. The statements that follow create a basket table, applying a
row-level TTL expression that deletes rows based on the following logic:

• Delete pending baskets if they were last updated over one hour ago; this gives•
customers a chance to revisit their order before we clean up their basket.

• Delete purchased baskets immediately.•

CREATE TYPE basket_status AS ENUM ('pending', 'purchased');

CREATE TABLE basket (
 "id" UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 "customer_id" UUID NOT NULL,
 "products" STRING[] NOT NULL,
 "status" basket_status NOT NULL DEFAULT 'pending',
 "last_update" TIMESTAMPTZ NOT NULL DEFAULT now()
) WITH (
 ttl_expiration_expression = '
 CASE
 WHEN status = ''purchased'' THEN last_update

 WHEN status = ''pending'' THEN
 ((last_update AT TIME ZONE ''UTC'') + INTERVAL ''1 hour'')
 AT TIME ZONE ''UTC''

 ELSE NULL
 END',
 ttl_job_cron = '* * * * *' -- Run once every minute.
);

Next, we’ll insert some baskets to simulate the various states they might be in:

-- An active pending basket.
INSERT INTO basket ("customer_id", "products", "status", "last_update")
VALUES (
 'a7d16771-09d7-460d-8264-cdbd6781b005',
 ARRAY['a', 'b', 'c'],
 'pending',
 now()
);

-- An inactive pending basket.
INSERT INTO basket ("customer_id", "products", "status", "last_update")
VALUES (
 'bcf370b8-c917-4629-b7cd-614b1cd37380',
 ARRAY['d', 'e', 'f'],
 'pending',
 now() - INTERVAL '1 hour'
);

Row-Level TTL | 211

-- A purchased basket
INSERT INTO basket ("customer_id", "products", "status", "last_update")
VALUES (
 'c6638bf0-cea9-4f10-8afa-7c1c0401a2b9',
 ARRAY['g', 'h', 'i'],
 'purchased',
 now()
);

After a short while (as defined by our ttl_job_cron parameter), the inactive pending
basket and the purchased basket will be deleted, leaving just the active pending basket
(which itself will be deleted after an hour of inactivity):

SELECT customer_id, status
FROM basket;

 customer_id | status
---------------------------------------+----------
 a7d16771-09d7-460d-8264-cdbd6781b005 | pending

Summary
In this chapter, we covered topics relating to application development with
CockroachDB.

Because CockroachDB is highly compatible with PostgreSQL and somewhat compat‐
ible with many other SQL databases, the basics of software development against
CockroachDB are not unique. Best practices for software development include using
connection pools, bulk processing, minimizing network traffic, and avoiding unnec‐
essary database requests.

If you are migrating to CockroachDB from a database whose default isolation is READ
COMMITTED, you may encounter retry errors in your application post migration. In the
short term, you can switch to CockroachDB’s READ COMMITTED isolation level, result‐
ing in application behavior you’re more accustomed to. In the long term, however, the
integrity of your data will benefit from serializable isolation.

CockroachDB’s default serializable consistency model is stricter than many other SQL
databases. Together with the higher possibility of conflicts in a distributed database,
this does lead to the possibility of transactional conflicts. There are two major pat‐
terns for dealing with these conflicts—retrying transactions (optimistic transactions)
or locking data with FOR UPDATE before modification (pessimistic transactions). Both
patterns are valid; regardless of which pattern you use, however, transaction retry
logic is recommended.

In the next chapter, we’ll explore the tools and techniques you can harness to get data
into and out of CockroachDB. We’ll also explore the CockroachDB features that allow
it to integrate seamlessly into your wider architecture.

212 | Chapter 6: Application Design and Implementation

CHAPTER 7

Application Migration and Integration

As a thoroughly modern database system, CockroachDB is a perfect choice for new
application development. However, it’s also a good choice for modernizing existing
applications. Many applications built on the last generation of relational database
systems are now facing limitations that can only be sensibly addressed by a migration
to a distributed architecture. In many cases, a distributed SQL-based system such
as CockroachDB is the most attractive migration target because—unlike distributed
NoSQL systems—it does not require a complete rework of the application’s data
model or code base. In this chapter, we’ll explain how to move data from existing
databases into CockroachDB.

Moving data into CockroachDB is just one part of the story. While CockroachDB
is a general-purpose database system, its sweet spot is undoubtedly operational
transactional processing. In many environments, the data that is processed within
CockroachDB will be leveraged for business intelligence or data science purposes in
combination with data from other operational systems. In these cases, we will need
a mechanism for moving data into external systems. The CockroachDB change data
capture (CDC) facility is invaluable for this purpose—we’ll see how CDC can be used
to move data into external systems such as Snowflake or Kafka. We’ll also see how
data can be dumped from CockroachDB directly to external files. Moving data into
CockroachDB is just one part of the story. While CockroachDB is a general-purpose
database system, its sweet spot is undoubtedly operational transactional processing.
In many environments, the data that is processed within CockroachDB will be lever‐
aged for business intelligence or data science purposes in combination with data
from other operational systems. In these cases, we will need a mechanism for moving
data into external systems. The CockroachDB change data capture (CDC) facility
is invaluable for this purpose—we’ll see how CDC can be used to move data into
external systems such as Snowflake or Kafka. We’ll also see how data can be dumped
from CockroachDB directly to external files.

213

Migration Objectives
When migrating from one system to another, it’s important to consider how the
new system will integrate into and complement your architecture and engineering
organization.

As a famous Gondor-based warrior once said, “One does not simply replace a
database with CockroachDB.” (He was ahead of his time.) Customers are realizing
that once they’ve adopted CockroachDB, they are not only replacing legacy technol‐
ogy but also simplifying their architecture and—in many cases—their engineering
organizations.

In this section, we’ll explore the various architectural simplifications enabled by
CockroachDB. We’ve created a YouTube series (https://cockroa.ch/4cAPMPx) to
demonstrate these patterns before and after CockroachDB and created a GitHub
repo (https://cockroa.ch/3Q090Fd) with the code if you’d like to follow along.

Database Consolidation
There’s merit in choosing the right tool for the job. From a database perspective,
however, this can lead engineering teams into implementing multiple specialized
databases, with each performing different tasks (e.g., one for fast data ingestion and
another for complex data querying) and needing to be integrated.

As a result of their migration to CockroachDB, Spreedly managed to:

• Replace Postgres and Riak•
• Remove a cyclical data dependency in their architecture•
• Remove three custom codebases that existed to get data out of Riak, through•

their architecture, and into Postgres
• Eliminate split-brain from their architecture•

In an architecture with hyper-specialized databases, the following architectural pat‐
terns come into play and can be simplified by CockroachDB:

Dual writes
A situation whereby an application is required to write to multiple downstream
integrations (e.g., two databases). In an architecture with dual writes, there’s no
guarantee that both downstream integrations will be in sync. What happens if
one write succeeds and another fails, or the application fails while making the
second write? Architectures that rely on dual writes are brittle and come with
higher application and operational complexity. Replacing multiple databases with
CockroachDB (which can scale for both reads and writes) can eliminate the need
for dual writes.

214 | Chapter 7: Application Migration and Integration

https://cockroa.ch/4cAPMPx
https://cockroa.ch/3Q090Fd
https://cockroa.ch/3Q090Fd

Read/write segregation
In any system where the database you’re writing to is different from the database
you’re reading from, you’re encountering read/write segregation. This is the
realm of split-brain, where no single consistent view of data can be guaranteed
across the architecture. By harnessing CockroachDB for both reads and writes
in this scenario, you remove the risk of split-brain, reduce your architectural
and operational cost and complexity, and gain one true source of data that’s
guaranteed to be consistent.

Failover Regions
The risks of high recovery point objective (RPO) and recovery time objective (RTO)
are inherent in any system where primary and secondary/standby infrastructure is
maintained. This is the world of disaster recovery and business continuity, and the
process of recovering from outages can be long, complex, and risky.

The following architectural patterns and requirements are common among two–data
center configurations:

Predictable failover latency
In any system where a primary node, region, or data center needs failing over
to another following an outage, nonzero RPOs (data loss) and high RTOs (long
downtimes) are a risk. The effort, architectural costs, and operation costs associ‐
ated with maintaining separate primary and standby infrastructure are high. So
too are the risks involved in failing over to the standby infrastructure and—post
outage—failing back to the primary. Running CockroachDB across three or more
nodes serves to eliminate the risks inherent in two–data center configurations.
If a two–data center configuration is required, CockroachDB’s built-in physical
cluster replication simplifies the challenge of cluster replication, minimizes RPO
and RTO, and makes the process of failover and failback safer and more straight‐
forward.

Database maintenance
In a two–data center configuration, the process of maintaining (e.g., patching
or upgrading) a database involves a number of complex steps. These steps are
designed to ensure the availability of the database and dependent applications
during the maintenance period. Performing a rolling upgrade of CockroachDB
nodes in a cluster comprising three or more nodes with Raft replication results
in zero downtime. If running across two data centers, CockroachDB’s physical
cluster replication and logical data replication will lower the architectural and
operational cost and complexity of the process and reduce the amount of down‐
time required.

Migration Objectives | 215

Horizontal scaling
The process of scaling a traditional database (or any predistributed computing
system) is complex. The scaling options available for these systems include verti‐
cal scaling and sharding, neither of which are without their drawbacks. Vertical
scaling is limited by the machine and involves downtime while resources are
swapped out. Sharding, on the other hand, is extremely complex and introduces
availability, consistency, and integrity risks to the platform. This is why most
cloud databases scale for reads but not for writes and offer eventual rather than
strong consistency. Scaling a CockroachDB cluster is as simple as adding and
removing nodes. It incurs zero downtime and allows the cluster to scale for reads
and writes, far beyond what is possible for traditional databases and even cloud
databases—all while maintaining strong consistency.

Fragile Data Integrations
An architecture’s complexity is a product of the components, integrations, and data
flows within it. In a system with multiple services, the communication between those
services needs to be carefully orchestrated. The following patterns speak to these
complexities:

Queue coherence
In an architecture where applications write to both a database and a message
queue, the issue of queue coherence becomes a risk. In the same way that dual-
writes to multiple data stores can result in split-brain, dual-writes involving mes‐
sage queues can result in incorrect data to downstream consumers. By writing
to CockroachDB and harnessing its built-in CDC, you enable the Transactional
Outbox pattern (https://cockroa.ch/4edjJGu), resulting in a stream of data for
downstream consumers that’s consistent with the database itself.

Extract, transform, and load (ETL)
This is the process where data is extracted from one data store, transformed
into a new shape, then loaded into another data store. This process can be
complex and involve a number of moving parts, especially if the data store you’re
extracting data from does not provide its own changefeeds. With CockroachDB,
this process is as simple as configuring a CDC changefeed (see using “CDC
Queries” on page 250). These changefeeds transform rows before sending them
to downstream consumers, satisfying both the extract and transform phases of
the ETL process.

Change data capture
With many databases, CDC is possible only with external tools like Debezium.
This increases both architectural and operational complexity, and ongoing vali‐
dation of system compatibility between the database and the CDC provider is

216 | Chapter 7: Application Migration and Integration

https://cockroa.ch/4edjJGu
https://cockroa.ch/4edjJGu

required. With CockroachDB, CDC is built-in, allowing you to build your CDC
changefeeds from within CockroachDB itself.

Data purging
Unless there’s a compelling reason to keep every row of data in your database
forever, it usually makes sense to either archive or delete it when it ceases to be
useful. Typically, this would involve writing a specialized service to scan your
database tables for old data and perform the necessary archival or deletion man‐
ually. With CockroachDB, your data can be given a row-level expiry (see “Row-
Level TTL” on page 210), a condition that, once met, will automatically delete
affected data. By doing this from within CockroachDB itself, you’re not only
removing the need for custom logic, you’re also benefitting from CockroachDB’s
built-in Admission Control (see “Admission Control” on page 485), ensuring that
database performance is not impacted.

Polling clients
If your database has multiple consumers polling for the most up-to-date data,
this can have a negative impact on performance. Rather than allowing consumers
to continuously poll for data, consider pushing updates to them via CDC. This
will result in both lower resource and network utilization and ensure consumers
all receive a consistent view of the latest database state.

Data at the edge
To get data as close to users as possible, traditional SQL databases require asyn‐
chronous replication. Users near the replicas will enjoy lower read latencies but
will be able to write to the database only via the primary region, resulting in
increased write latency. CockroachDB solves the challenge of data locality using
its powerful geo-partitioning topology patterns. GLOBAL tables provide low read
latencies to all users, while REGIONAL BY ROW tables provide low read and write
latencies. See “Locality Rules” on page 363 for more information.

Unnecessary Caching Tier
With monolithic databases, your options for scaling were limited. You could upgrade
your CPU, add memory, and fit a new network card, but ultimately there would be a
ceiling. For this reason, developers might choose to take some of the read pressure off
the database by implementing a cache.

With distributed SQL databases, your scaling options are less constrained, as the
technology is designed to scale.

Consider read bottlenecks. In a read-heavy system, it may be tempting (or necessary)
to offload read load to a cache to lessen the load on the database. The introduction
of a cache results in higher architectural complexity, the dual-write problem, and
the opportunity for split-brain. A horizontally scalable database like CockroachDB

Migration Objectives | 217

obviates the need for a cache in all but the most extreme read-heavy scenarios (we’re
talking about viral cat meme levels of read-heaviness). Generally, you should allow
your database to handle read traffic, horizontally scaling as demand increases until it’s
no longer feasible to avoid caching.

Unnecessary Data Warehouse Workloads
Implementing a separate relational and analytical database increases the complexity
and operational overhead of an architecture, as both systems need to be maintained
and integrated. For simple analytical workloads, users might benefit from running
queries directly in CockroachDB.

For heavy analytical workloads, you may prefer to extract data out of CockroachDB
and into a specialized Online Analytical Processing (OLAP) database like Snowflake,
BigQuery, or RedShift. If, however, your analytical workload does not require a full
OLAP database (and the complexities that come with extraction and loading), you
may prefer to perform your analytical queries against CockroachDB. CockroachDB
provides a number of tools to minimize the impact of analytical workloads, allowing
you to gain analytical insights the moment they become available. See “Ad Hoc or
Analytic Queries” on page 473 for more information.

Application Silos
There are good reasons to isolate applications that serve different geographic markets
(regulatory compliance, etc.). Isolation, however, doesn’t have to mean disparate.

As your user base grows, so too will your architecture. Unless this growth is carefully
designed for, you may end up with multiple disparate instances of the application
stack—each with their own databases, applications, dependencies, and vulnerabilities.
In a fragmented architecture like this, config drift becomes an increasingly difficult
challenge to prevent. Operational complexity increases, while velocity and resource
utilization efficiency decrease. CockroachDB’s geo-partitioning allows you reach
new markets by growing your existing cluster, giving you centralized control over
a distributed system, rather than distributing your team to manage multiple non-
distributed systems. See “Multiregion Distribution” on page 44 for more information.

Loading Data
The first step when adopting CockroachDB is often to move data into the database
from legacy systems or other sources. The most fundamental data load activity in
CockroachDB is to load data from “flat files.” CockroachDB can load data from
delimited files—such as the ubiquitous CSV file—or from the Avro format. Data is
loaded using the IMPORT INTO command introduced in Chapter 4.

218 | Chapter 7: Application Migration and Integration

File Locations
In monolithic databases, loading data from flat files is typically done directly from
files on filesystems—typically staged to the database server first to avoid network
overhead. However, as a distributed cloud native database, CockroachDB takes a
slightly different tack.

The IMPORT INTO command requires that files are located on cloud storage (S3,
GCP buckets, Azure containers), “userfiles” uploaded to the CockroachDB server, or
HTTP file servers.

userfile storage
Let’s start with uploading a file to cluster userfile storage. Userfile storage is a sort of
virtual filestore maintained by the CockroachDB cluster, allowing access to files from
the SQL layer across the entire cluster.

The cockroach userfile upload command allows you to copy a file to cluster
storage. The file will be accessible only to the user who uploaded the file:

$ cockroach userfile upload employees.csv employees.csv --url $CRDB_CLUSTER

successfully uploaded to userfile://defaultdb.public.userfiles_guy/employees.csv

Nodelocal storage is similar to userfile storage but loads the file to just one of the
nodes of the cluster. It is less secure than userfile storage—since it can be accessed
from any CockroachDB database account—and less robust since an IMPORT INTO
from userfile storage can survive a node failure. On the other hand, a nodelocal
upload is somewhat faster to execute.

The cockroach nodelocal upload command uploads a file to nodelocal storage:

$ cockroach nodelocal upload employees.csv employees.csv --url $CRDB_LOCAL

successfully uploaded to nodelocal://1/employees.csv

Both commands return the location for the file; you’ll need that to load the file into a
table later.

HTTP storage
CockroachDB can also access files held on local filesystems by running an HTTP file
server (https://cockroa.ch/3r2Dt9u) such as nginx (https://cockroa.ch/33SYmLC).

Cloud storage
For large files, nodelocal and userlocal storage results in disk space and I/O being
consumed on at least one of the cluster nodes, which may be less than ideal.

Loading Data | 219

https://cockroa.ch/3r2Dt9u
https://cockroa.ch/3r2Dt9u
https://cockroa.ch/33SYmLC

Therefore, CockroachDB supports cloud storage locations, including Google Cloud
Storage, Amazon S3 buckets, and Azure Storage containers.

In this example, we create a Google Cloud Storage bucket and upload a CSV file to
that location. The example assumes that we are already logged in to Google Cloud:

$ ~ gsutil mb gs://cockroachdefinitiveguide
Creating gs://cockroachdefinitiveguide/...
$ gsutil cp employees.csv gs://cockroachdefinitiveguide
Copying file://employees.csv [Content-Type=text/csv]...
/ [1 files][8.8 KiB/ 8.8 KiB]
Operation completed over 1 objects/8.8 KiB.
$ gsutil ls gs://cockroachdefinitiveguide/
gs://cockroachdefinitiveguide/employees.csv

Here we upload the same file to an Azure container with the URL:

$ az storage container create --name cockroachdbdefinitiveguide
 --account-name crdbdg

{
 "created": true
}
$ az storage copy -s employees.csv -d
 https://crdbdg.blob.core.windows.net/cockroachdbdefinitiveguide

 <snip>
TotalBytesTransferred: 9011
Final Job Status: Completed

Finally, we upload this file to Amazon S3 storage. As with the other examples, we’ve
already configured our AWS authentication:

$ aws s3 mb s3://cockroachdefinitiveguide
make_bucket: cockroachdefinitiveguide
$ aws s3 cp employees.csv s3://cockroachdefinitiveguide
upload: ./employees.csv to s3://cockroachdefinitiveguide/employees.csv

Importing from userfile Storage
Once you have your file in cloud, userlocal, or other accessible storage, you’ll typically
use the IMPORT INTO command to load the data. You’ll need appropriate privileges
(https://cockroa.ch/3x4SdIq) on the target table.

Here’s an example of IMPORT INTO, loading data into a new table and loading data
from the userfile location that we created in the previous section.

First, we upload the CSV file:

$ cockroach userfile upload departments.csv departments.csv \
 --url $CRDB_CLUSTER
 uploaded to userfile://defaultdb.public.userfiles_guy/departments.csv

220 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3x4SdIq

Now we create the table and import the data:

guy@cockroachlabs.cloud:26257/defaultdb>
CREATE TABLE departments (
 department_id integer PRIMARY KEY,
 department_name varchar,
 manager_id integer,
 location_id integer
);
CREATE TABLE

Time: 40ms total (execution 24ms / network 16ms)

guy@cockroachlabs.cloud:26257/defaultdb>
IMPORT INTO departments
 (department_id, department_name, manager_id, location_id)
 ("userfile://defaultdb.public.userfiles_guy/departments.csv")
 WITH skip = '1', nullif = '';

 job_id | status | fraction_c | rows | index_entries | bytes
---------------------+-----------+------------+------+---------------+--------
 678724479937937414 | succeeded | 1 | 27 | 0 | 771
(1 row)

Time: 550ms total (execution 532ms / network 18ms)

In the previous example, we specified WITH skip=1, nullif = ''; this signified that
we should skip the first line of the CSV file (which consisted of a header line) and
treat blanks as null values. These two options are commonly used. Other options are
shown in Table 7-1.

Table 7-1. Common options for IMPORT INTO

Option Usage Default

allow_quoted_null If provided, both quoted and unquoted CSV input values can match the nullif
setting.

comment The Unicode character that identifies rows to skip.

data_as_binary_records Import Avro from a binary file. Use in conjunction with schema or
schema_uri to reference the schema.

data_as_json_records Import Avro from a JSON file. Use in conjunction with schema or
schema_uri to reference the schema.

decompress The decompression codec to be used: gzip, bzip, auto, or none. Default:
'auto', which guesses based on file extension (.gz, .bz, .bz2). none disables
decompression.

'auto'

delimiter The Unicode character that delimits columns in your rows. ,

DETACHED Run the import job asynchronously. Job status will be available via SHOW
JOBS.

fields_enclosed_by The Unicode character that encloses fields. "

Loading Data | 221

Option Usage Default

fields_escaped_by The Unicode character, when preceding one of the above DELIMITED
DATA options, to be interpreted literally. Often the “\” symbol serves the
purpose.

fields_terminated_by The Unicode character used to separate fields in each input line. \t

nullif The string that should be converted to NULL.

records_terminated_by The Unicode character to indicate newlines in the input file. \n

row_limit The number of rows to import. This will import the first n rows from each
table.

rows_terminated_by The Unicode character to indicate newlines in the input file. \n

schema The schema of the Avro records in the binary or JSON file (not required for
Avro OCF).

schema_uri The URI schema file for the Avro records in the binary or JSON file (not
required for Avro OCF).

skip The number of rows to be skipped while importing a file. '0'

strict_validation Reject Avro records that don’t exactly match the CockroachDB schema.

Importing from Cloud Storage
Specifying userfile or nodelocal file locations is relatively simple, but in many
cases, cloud storage is a more suitable option. When specifying a cloud location, we
need to also specify credentials to allow the connection to succeed. For instance, if we
uploaded the departments data to Amazon S3 as follows:

$ aws s3 cp departments.csv s3://cockroachdefinitiveguide
upload: ./departments.csv to s3://cockroachdefinitiveguide/departments.csv

we need to specify our AWS access keys when referencing the file from within an
IMPORT INTO statement:

defaultdb>
IMPORT INTO departments
 (department_id,department_name,manager_id,location_id)
 CSV DATA (
"s3://cockroachdefinitiveguide/departments.csv?
AWS_ACCESS_KEY_ID=key
&AWS_SECRET_ACCESS_KEY=key")
 WITH skip='1', nullif = '';

 job_id | status | fraction | rows | index_entries | bytes
---------------------+-----------+----------+------+---------------+--------
 678728775096893441 | succeeded | 1 | 27 | 0 | 771
(1 row)

Time: 1.379s total (execution 1.363s / network 0.016s)

222 | Chapter 7: Application Migration and Integration

To avoid including access keys in SQL commands, you can specify authentication in
environment variables. Similar authentication mechanisms are provided for Google
Cloud and Azure Storage systems. See the CockroachDB documentation (https://cock
roa.ch/3Jcq58C) for more information.

To avoid the reuse and proliferation of sensitive credentials, CockroachDB provides
external connections (https://cockroa.ch/4dVJ6MB). These allow operators to refer‐
ence cloud storage endpoints without knowing their sensitive credentials. Here’s how
to create and use an external connection:

CREATE EXTERNAL CONNECTION your_s3_bucket AS
's3://your_bucket_name?AWS_ACCESS_KEY_ID=key&AWS_SECRET_ACCESS_KEY=key';

IMPORT INTO departments
 (department_id, department_name, manager_id, location_id)
 CSV DATA ('external://your_s3_bucket/optional_sub_dir/*')
 WITH skip='1', nullif = '';

Publicly Accessible Cloud Storage
Specifying cloud storage authentication parameters can be awkward. You might be
tempted to use publicly accessible buckets or file settings to avoid the pain. This
is usually a Very Bad Idea—it potentially exposes sensitive data to the world and
may even be illegal if confidential information protected by HIPAA (the US Health
Insurance Portability and Accountability Act) or similar legislation is exposed.

Note that IMPORT INTO invalidates all foreign key constraints on the target table.
These foreign keys need to be reenabled using the VALIDATE CONSTRAINT command.

We’ll see some examples of using IMPORT INTO with PostgreSQL and MySQL dump
files later in the chapter.

Import Performance
Import performance can vary markedly depending on the format of the data and the
sequencing of DDL commands. It’s often best to defer index and constraint creation
until after the data load and to use compact data formats. The effectiveness of these
strategies can depend on network bandwidth, memory constraints, and other factors.
For a discussion of import performance, consult the CockroachDB documentation
(https://cockroa.ch/3DBBlKE). Generally, however, IMPORT INTO is the fastest way to
get data into CockroachDB, as the table is taken offline during the import process.
This makes it a good choice for bulk-loading data during periods where table down‐
time can be tolerated.

Loading Data | 223

https://cockroa.ch/3Jcq58C
https://cockroa.ch/4dVJ6MB
https://cockroa.ch/3DBBlKE

Migrating from Another Database
The easiest way to migrate to CockroachDB from another database is by using
Cockroach Labs’ MOLT tool suite (https://cockroa.ch/4gnnw5l), outlined in Table 7-2.

Table 7-2. Available MOLT tools

Tool Usage
Schema Conversion Tool Convert a source database schema (e.g., Postgres, MySQL, Oracle, SQL Server) into a

CockroachDB-compatible schema.

Fetch Move data from a source database into CockroachDB. A good choice for an initial
bulk-ingestion of data.

Verify Checks for discrepancies between a source and target database. Run to ensure that
the structure and content of your tables matches your expectations.

Live Migration Service Sitting between your applications and databases, the Live Migration Service (or
“LMS”) is a horizontally scaling proxy that provides different cutover strategies to
suit your migration requirements.

We’ll explore each of the MOLT tools later in this chapter.

There are a variety of ways to migrate from one database system to another. The most
straightforward way is as follows:

1. Extract DDL from the source system and convert that DDL to CockroachDB-1.
compatible CREATE TABLE, INDEX, VIEW, and other statements.

2. Dump table data from the source system to CSV or another flat-file format.2.
3. Import the flat files using the IMPORT INTO statement.3.

This procedure copies static data only—for a live system, you may need to implement
custom procedures to synchronize the state of the source and target system and per‐
form a cutover with minimal downtime. While every software migration is unique,
we will discuss several common approaches in the following sections.

Extracting and Converting DDL
Most database systems provide mechanisms for generating DDL statements for
schema objects. Coming up, we’ll look at a few platform-specific techniques. How‐
ever, some cross-platform IDEs can generate DDL for multiple types of database
systems.

For example, we can generate DDL from the DBeaver object tree for most of the SQL
database systems supported by DBeaver (which is practically all). In Figure 7-1, we
generate a CREATE TABLE statement for the departments table in the AdventureWorks
sample schema.

224 | Chapter 7: Application Migration and Integration

https://cockroa.ch/4gnnw5l

Figure 7-1. Generating DDL using DBeaver

Extracting Oracle DDL
Oracle includes the dbms_metadata package, which can generate DDL for Oracle
objects. The package includes settings that suppress or allow various storage clau‐
ses and other Oracle-specific information, resulting in an output that is closer to
CockroachDB compatibility than would otherwise be the case. Example 7-1 shows a
script that will emit DDL for all Oracle tables, indexes, and views in a specific Oracle
account.

Example 7-1. Script to extract Oracle DDL

set long 100000
set head off
set echo off
set pagesize 0
set verify off
set feedback off
col DDL format a256

Migrating from Another Database | 225

REM These statements limit Oracle-specific clauses generated
EXECUTE dbms_metadata.SET_TRANSFORM_PARAM(
dbms_metadata.SESSION_TRANSFORM,'SEGMENT_CREATION',false);
EXECUTE dbms_metadata.SET_TRANSFORM_PARAM(
dbms_metadata.SESSION_TRANSFORM,'CONSTRAINTS_AS_ALTER',true);
EXECUTE dbms_metadata.set_transform_param(
dbms_metadata.session_transform,'TABLESPACE',false);
EXECUTE dbms_metadata.set_transform_param(
dbms_metadata.session_transform,'STORAGE',false);
EXECUTE dbms_metadata.set_transform_param(
dbms_metadata.session_transform,'SEGMENT_ATTRIBUTES',false);
EXECUTE dbms_metadata.set_transform_param (
dbms_metadata.session_transform, 'SQLTERMINATOR', true);
EXECUTE dbms_metadata.set_transform_param (
dbms_metadata.session_transform, 'PRETTY', true);

SELECT dbms_metadata.get_ddl('TABLE', table_name,user) AS ddl FROM user_tables;
SELECT dbms_metadata.get_ddl('INDEX', index_name,user) AS ddl FROM user_indexes;
SELECT dbms_metadata.get_ddl('VIEW',view_name,user) AS ddl FROM user_views;

EXIT

Example 7-1 generates the DDL shown in Example 7-2.

Example 7-2. Example of Oracle DDL

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
) ;
CREATE UNIQUE INDEX "HR"."EMP_EMP_ID_PK" ON "HR"."EMPLOYEES" ("EMPLOYEE_ID")
 ;
ALTER TABLE "HR"."EMPLOYEES" ADD CONSTRAINT "EMP_EMP_ID_PK"
 PRIMARY KEY("EMPLOYEE_ID")
 USING INDEX "HR"."EMP_EMP_ID_PK" ENABLE;
ALTER TABLE "HR"."EMPLOYEES" ADD CONSTRAINT "EMP_DEPT_FK"
 FOREIGN KEY ("DEPARTMENT_ID")
 REFERENCES "HR"."DEPARTMENTS" ("DEPARTMENT_ID") ENABLE;

226 | Chapter 7: Application Migration and Integration

We still have some work to do to make this DDL CockroachDB-compatible:

• First, we need to convert data types to CockroachDB types. The Oracle NUMBER•
type encapsulates both INTEGER and FLOAT types, depending on the precision
provided. VARCHAR2 maps to VARCHAR. There are many esoteric Oracle data types,
but in the majority of cases, date and number conversions will dominate.

• The ENABLE clauses are unknown to CockroachDB and need to be removed, as do•
the USING INDEX clauses.

The following sed commands will perform a lot of the edits required:

s/VARCHAR2(.*)/VARCHAR/g
s/NUMBER(.*,0)/INT/g
s/NUMBER(.*,.*)/DECIMAL(\1)/g
s/NUMBER\((.*),*\)/FLOAT(\1)/g
s/NUMBER/FLOAT/g
s/USING INDEX (.*) ENABLE//g
s/USING INDEX //g
s/ENABLE//g
s/\"(.*)\"\.//g

So, if we called the script in Example 7-1 getDDLOracle.sql, then we could generate
the DDL for a schema and perform some initial edits as follows:

sql -S hr/hr@local @getDDLOracle.sql |sed -f oracle.sed

CREATE TABLE "HR"."JOBS"
 ("JOB_ID" VARCHAR,
 "JOB_TITLE" VARCHAR CONSTRAINT "JOB_TITLE_NN" NOT NULL,
 "MIN_SALARY" INT,
 "MAX_SALARY" INT
) ;
CREATE UNIQUE INDEX "HR"."JOB_ID_PK" ON "HR"."JOBS" ("JOB_ID")
;
ALTER TABLE "HR"."JOBS" ADD CONSTRAINT "JOB_ID_PK" PRIMARY KEY ("JOB_ID")
 "HR"."JOB_ID_PK" ;

More changes to the SQL will usually be required. For instance, in the example
DDL, the JOB_ID is initially created without the NOT NULL constraint—Oracle allows
nullable primary keys. The primary key is added after the CREATE TABLE by an ALTER
TABLE statement. However, in CockroachDB a primary key column must also be NOT
NULL. Furthermore, it’s best practice in CockroachDB to specify the PRIMARY KEY
within the CREATE TABLE statement; otherwise, a hidden primary key field will be
created.

Migrating from Another Database | 227

Extracting DDL from SQL Server
There’s no direct way to generate DDL from SQL Server T-SQL commands, but you
can extract DDL from the Microsoft Management Studio (From Tasks → Generate
Scripts). Some users have created stored procedures to generate DDL (https://cock
roa.ch/3uRymtu). You can also use DBeaver as described previously.

Extracting DDL from MySQL

MySQL supports a SHOW CREATE command, which can be used to extract DDL for
a particular object. For instance, in the following code, we extract the DDL for the
customer table in the Sakila schema:

$ mysql -uroot -D sakila -s -N
mysql> show create table customer;

customer CREATE TABLE `customer` (\n
`customer_id` smallint unsigned NOT NULL AUTO_INCREMENT,\n
`store_id` tinyint unsigned NOT NULL,\n
`first_name` varchar(45) NOT NULL,\n
`last_name` varchar(45) NOT NULL,\n `email` varchar(50) DEFAULT NULL,\n
`address_id` smallint unsigned NOT NULL,\n
`active` tinyint(1) NOT NULL DEFAULT '1',\n
`create_date` datetime NOT NULL,\n
`last_update` timestamp NULL DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP,\n
PRIMARY KEY (`customer_id`),\n
KEY `idx_fk_store_id` (`store_id`),\n
KEY `idx_fk_address_id` (`address_id`),\n
KEY `idx_last_name` (`last_name`),\n
CONSTRAINT `fk_customer_address` FOREIGN KEY (`address_id`)
REFERENCES `address` (`address_id`) ON DELETE RESTRICT ON UPDATE CASCADE,\n
CONSTRAINT `fk_customer_store` FOREIGN KEY (`store_id`)
REFERENCES `store` (`store_id`) ON DELETE RESTRICT ON UPDATE CASCADE\n)
ENGINE=InnoDB AUTO_INCREMENT=600 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

You can also dump all the DDL for a schema using the mysqldump command with the
-d option. -d suppresses data in the output:

$ sakila-db mysqldump -d -u root sakila
-- MySQL dump 10.13 Distrib 8.0.23, for osx10.16 (x86_64)
--

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
<snip>
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

228 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3uRymtu

1 A DVD is a sort of 3D-printed representation of a movie. In ancient times, primitive people used DVDs in
areas where Netflix was not available.

--
-- Table structure for table `actor`
--

DROP TABLE IF EXISTS `actor`;
CREATE TABLE `actor` (
 `actor_id` smallint unsigned NOT NULL AUTO_INCREMENT,
 `first_name` varchar(45) NOT NULL,
 `last_name` varchar(45) NOT NULL,
 `last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP,
 PRIMARY KEY (`actor_id`),
 KEY `idx_actor_last_name` (`last_name`)
) ENGINE=InnoDB AUTO_INCREMENT=201 DEFAULT CHARSET=utf8mb4
 COLLATE=utf8mb4_0900_ai_ci;

MySQL SQL is largely compatible with CockroachDB, but you will want to remove
the ENGINE and CHARSET directives. CockroachDB does support the COLLATE keyword,
but the syntax is not identical. Also, MySQL surrounds literal names with backticks
(`)—these will need to be changed to double quotes for CockroachDB. In the exam‐
ple, you’ll also need to remove the ON UPDATE and AUTO_INCREMENT flags.

Finally, secondary indexes in MySQL CREATE TABLE statements are shown as KEY
elements in the CREATE TABLE statement. These will need to be removed and trans‐
formed to CREATE INDEX statements or to INDEX statements embedded within the
CREATE TABLE statement.

In some cases, you might be able to directly import a MySQL dump file; we’ll look at
this option later in this chapter.

Extracting DDL from PostgreSQL

You can extract DDL from a PostgreSQL database by using the pg_dump command
with the -s or --schema-only options. Here we dump the SQL from the DVDRental
sample database.1 You can also specify the -t option to extract DDL for a specific
table in the DVDRental database:

$ pg_dump -s dvdrental -t customer
--
-- PostgreSQL database dump
--

-- Dumped from database version 13.3
-- Dumped by pg_dump version 13.3
<snip>

Migrating from Another Database | 229

--
-- Name: customer; Type: TABLE; Schema: public; Owner: postgres
--

CREATE TABLE public.customer (
 customer_id integer DEFAULT
nextval('public.customer_customer_id_seq'::regclass) NOT NULL,
 store_id smallint NOT NULL,
 first_name character varying(45) NOT NULL,
 last_name character varying(45) NOT NULL,
 email character varying(50),
 address_id smallint NOT NULL,
 activebool boolean DEFAULT true NOT NULL,
 create_date date DEFAULT ('now'::text)::date NOT NULL,
 last_update timestamp without time zone DEFAULT now(),
 active integer
);

CockroachDB and PostgreSQL are highly compatible, but you’ll still probably want
to amend this SQL. In the preceding example, the primary key is based on a
sequence generator, and as we discussed in Chapter 5, there are better options for
CockroachDB. Columns based on PostgreSQL domains will need amendment as well;
we’ll discuss this later when we look at importing PostgreSQL data directly.

General Considerations When Converting DDL
A lot of the drudgery involved in converting DDL to CockroachDB involves repet‐
itively changing data types and removing syntax clauses that have no effect in
CockroachDB. However, there are some more nuanced decisions that you’ll need
to make that are reflective of more substantial differences between CockroachDB and
other SQL databases:

• In a distributed SQL system, the selection of the primary keys data type and pop‐•
ulation mechanisms are particularly significant. Review the section on primary
keys in Chapter 5 and make sure that you choose a primary key type that will
work well for your application.

• Triggers may be implemented in other systems that implement business logic•
or refine referential integrity constraints. Carefully review the trigger code and
determine if this logic needs to be implemented in application logic.

• Some databases allow the definition of user-defined data types or domains, which•
will be associated with their own constraints and data types. Most of these will
need to be folded into your DDL (although CockroachDB does support ENUMs as
user-defined types).

• The sequence of SQL statements is important. FOREIGN KEY references in•
CockroachDB can be created only if the referenced table exists. You may need
to adjust the sequence of SQL statements to ensure that there are no broken

230 | Chapter 7: Application Migration and Integration

dependencies. If you can defer all foreign key constraint generation until after
every table is created, then that would be ideal. You may also find that your
overall migration is faster if all index and constraint creations are deferred until
after table data has been loaded.

• Review the indexing scheme carefully. In particular, in CockroachDB, covering•
indexes are a more important optimization than in some other databases. See
Chapter 5 for more information on this topic.

Exporting Data
Having created the tables and other schema objects in the CockroachDB target, the
next task is to dump the target data to CSV format. Each database system provides
some mechanism to do this. You can sometimes use an IDE to perform this task. For
instance, as shown in Figure 7-2, DBeaver can export table data to CSV format from
any of its supported database types.

Figure 7-2. Exporting data from DBeaver

Migrating from Another Database | 231

2 This technique requires that secure-file-priv allows files to be written to the nominated directory and that
the command is run from the MySQL host.

In Oracle, we can simply use the set sqlformat csv setting to cause the SQLcl
command-line tool to write data out in CSV format. The following script can per‐
form this task:

set head on
set echo off
set pagesize 0
set verify off
set feedback off
set sqlformat csv

select * from &1;

exit

In SQL Server, you can export data to CSV from the SQL Server Management Studio,
or you can use the sqlcmd command line as follows:

sqlcmd -U SA -P **** -d AdventureWorks2019 \
 -Q 'SELECT * FROM HumanResources.Employee' \
 -W -w 1024 -s”,”

MySQL allows data to be dumped to CSV from the mysqldump command:2

$ mysqldump -u root --no-create-info --tab=/tmp Sakila customer \
 --fields-terminated-by=,

In PostgreSQL, we can copy files to CSVs using the COPY command:

dvdrental=# COPY customer to '/tmp/customer.csv' DELIMITER ',' CSV HEADER;
COPY 599

Migrating Schemas to CockroachDB
Once a database schema has been exported from a source database (Postgres, MySQL,
etc.), the easiest way to convert that schema into something CockroachDB can
use is to run the MOLT Schema Conversion Tool (SCT). The SCT is available for
CockroachDB Cloud deployments (Basic, Standard, and Advanced).

Before we can use the tool, we’ll need to create a CockroachDB Cloud cluster. Head
to the CockroachDB Cloud console (https://cockroa.ch/2wtOtU2) and create a Basic,
Standard, or Advanced cluster.

First, we’ll need a schema to migrate. Let’s start by creating a Postgres database using
Docker:

docker run -d \
 --name postgres \

232 | Chapter 7: Application Migration and Integration

https://cockroa.ch/2wtOtU2

 -p 5432:5432 \
 -e POSTGRES_PASSWORD=password \
 postgres:15.2-alpine

Next we’ll hop into the terminal and create some database objects:

PGPASSWORD=password psql -h localhost -U postgres

CREATE TABLE customers (
 id SERIAL PRIMARY KEY,
 email VARCHAR(255) NOT NULL UNIQUE
);

CREATE TABLE orders (
 id SERIAL PRIMARY KEY,
 customer_id INT NOT NULL REFERENCES customers(id),
 total DECIMAL NOT NULL,
 ts TIMESTAMP NOT NULL DEFAULT now()
);

Finally, we’ll run pg_dump to export the database into a local file called dump.sql:
pg_dump -h localhost -U postgres -d postgres > dump.sql

Within this dump file will be instructions on how to re-create the database in Post‐
gres, complete with CREATE TABLE and CREATE SEQUENCE statements as expected by
Postgres.

Back in the CockroachDB Cloud console, click on “Migrations,” then “Add Schema.”
Choose the PostgreSQL dialect and select between INT4 and INT8 to use as the default
integer width. Lastly, upload the dump.sql file to begin the process.

The SCT will highlight any errors it encounters and walk you through the process of
resolving them. It will also highlight database practices that may not translate well to
distributed SQL, such as auto-incrementing identifiers, etc.

Loading Data into CockroachDB with MOLT Fetch
The easiest way to load data from a source database into CockroachDB is via MOLT
Fetch (https://cockroa.ch/4054qJV). To keep things simple, we’ll insecurely import
data from Postgres using a direct copy (COPY FROM with no use of intermediate files).
In reality, your imports would be secure and you should follow the MOLT Fetch best
practices (https://cockroa.ch/3W9aAHI).

We’ll start by running a local instance of both Postgres (our source database) and
CockroachDB (our target database) using Docker:

Postgres
docker run -d \
 --name postgres \
 -p 5432:5432 \
 -e POSTGRES_PASSWORD=password \

Migrating from Another Database | 233

https://cockroa.ch/4054qJV
https://cockroa.ch/4054qJV
https://cockroa.ch/3W9aAHI
https://cockroa.ch/3W9aAHI

 postgres:15.2-alpine

CockroachDB
docker run -d \
 --name=cockroachdb \
 -p 26257:26257 \
 -p 8080:8080 \
 -v "data:/cockroach/cockroach-data" \
 cockroachdb/cockroach:v24.2.0 start-single-node \
 --insecure

Next, we’ll insert some data into our Postgres source database:

PGPASSWORD=password psql -h localhost -U postgres

CREATE DATABASE eg;
\c eg;

CREATE TABLE postgres_table (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 value DECIMAL NOT NULL,
 ts TIMESTAMP NOT NULL
);

INSERT INTO postgres_table (value, ts)
 SELECT
 random() * 100,
 t
 FROM generate_series(
 '2022-01-01'::TIMESTAMP,
 '2023-01-01'::TIMESTAMP,
 '1 hour'::INTERVAL
) t;

Then, we’ll prepare our CockroachDB target database:

cockroach sql --host localhost:26257 --insecure

CREATE DATABASE eg;
USE eg;

CREATE TABLE postgres_table (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 value DECIMAL NOT NULL,
 ts TIMESTAMP NOT NULL
);

Finally, we’ll run MOLT Fetch, using our Postgres database as the --source and
our CockroachDB database as the --target. The --allow-tls-mode-disable flag is
required here, as the target CockroachDB cluster is running insecurely:

molt fetch \
 --source 'postgres://postgres:password@localhost:5432/eg?sslmode=disable' \
 --target 'postgres://root@localhost:26257/eg?sslmode=disable' \

234 | Chapter 7: Application Migration and Integration

 --table-filter 'postgres_table' \
 --direct-copy \
 --cleanup \
 --allow-tls-mode-disable

Running a SELECT query against the CockroachDB version of the table shows that
the import has taken place:

SELECT COUNT(*) FROM postgres_table;
 8761

However, to assert that our data has been migrated correctly, we can use MOLT
Verify:

molt verify \
 --source 'postgres://postgres:password@localhost:5432/eg?sslmode=disable' \
 --target 'postgres://root@localhost:26257/eg?sslmode=disable' \
 --table-filter 'postgres_table' \
 --allow-tls-mode-disable

...
{"level":"info","net_duration_ms":161.29025,"net_duration":"000h 00m 00s",
"message":"verification complete"}

Our CockroachDB target database schema and data exactly matches our original
Postgres schema and data; the migration has been successful.

Loading Data into CockroachDB with IMPORT INTO
If you would prefer to import data using the IMPORT INTO statement, once data is
exported to CSV and we have valid CockroachDB DDL, we can import the data using
the IMPORT INTO command. For instance, this statement will load the EMPLOYEES data
from Oracle that we first looked at back in Example 7-2, assuming that we’ve loaded
the data into nodelocal storage:

defaultdb>
IMPORT INTO "EMPLOYEES"
 ("EMPLOYEE_ID","FIRST_NAME","LAST_NAME","EMAIL",
 "PHONE_NUMBER","HIRE_DATE",
 "JOB_ID","SALARY","COMMISSION_PCT","MANAGER_ID",
 "DEPARTMENT_ID")
 CSV DATA ("nodelocal://1/employees.csv") WITH skip='1', nullif = '';

 job_id | status | fraction_c | rows | index_entries | bytes
------------------+-----------+------------+------+---------------+--------
678984786365906945| succeeded | 1 | 107 | 0 | 10955
(1 row)

Note that during an IMPORT INTO, all foreign key constraints are invalidated on the
target table, so you have to use VALIDATE CONSTRAINT (https://cockroa.ch/3JcqKa6) to
revalidate the data.

Migrating from Another Database | 235

https://cockroa.ch/3JcqKa6

Directly Importing PostgreSQL or MySQL Dumps
In some circumstances, you can directly import PostgreSQL or MySQL dump files in
a single operation. The IMPORT PGDUMP and IMPORT MYSQLDUMP commands can read
an entire dump file and attempt to create the tables and load the data directly.

For PostgreSQL, use pg_dump to dump the required data. In this case, we dump the
DVDRental databases:

$ pg_dump dvdrental >dvdrental.pgdump

From MySQL, use mysqldump. In this example, we dump the Sakila sample database:

$ mysqldump -u root Sakila >Sakila.dump

Now we load the files concerned into userfile storage:

$ cockroach userfile upload Sakila.dump Sakila.dump --url $CRDB_CLUSTER
 uploaded to userfile://defaultdb.public.userfiles_guy/Sakila.dump
$ cockroach userfile upload dvdrental.pgdump --url $CRDB_CLUSTER
 uploaded to userfile://defaultdb.public.userfiles_guy/dvdrental.pgdump

Then let’s try to import the MySQL dump file:

guy@sticky-donkey-8sd:26257/sakila>
IMPORT MYSQLDUMP
 'userfile://defaultdb.public.userfiles_guy/Sakila.dump' ;
ERROR: unimplemented: cannot import GEOMETRY columns at this time
SQLSTATE: 0A000
HINT: You have attempted to use a feature that is not yet implemented.
See: https://go.crdb.dev/issue-v/32559/v21.1

Whoops. Let’s try the PostgreSQL dump:

guy@sticky-donkey-8sd:26257/dvdrental>
IMPORT PGDUMP
 'userfile://defaultdb.public.userfiles_guy/dvdrental.pgdump'
 WITH ignore_unsupported_statements;
ERROR: cannot add a SET NULL cascading action on column "payment.rental_id"
which has a NOT NULL constraint
SQLSTATE: 42830
guy@sticky-donkey-8sd:26257/dvdrental>

No, that didn’t work either. Alas, this is the most common experience when import‐
ing dump files directly. Unless the source database uses only very vanilla schema
objects, something in the dump file will not translate directly to CockroachDB. You
are, therefore, probably better off extracting the DDL first—as shown in the previous
sections—and hand-converting it to CockroachDB-compatible syntax and features.

236 | Chapter 7: Application Migration and Integration

Synchronizing and Switching Over
The extract DDL, export CSV, and import procedure is a good way to move over data
for development and testing purposes. It’s possible that you will be able to use the
same technique for a production system, but it definitely requires downtime.

Because data from multiple tables will be dumped to CSV at different times, or at
least within distinct transactional scopes, there will be no guarantee of consistency
between tables. If you dump CSVs from an active transactional system, it’s possible
you will encounter a foreign key violation on import. Even worse, you may receive no
error but still have inconsistent data. Furthermore, transactions that hit the produc‐
tion system during or after the dump will not be included. So if you plan on using a
dump and load strategy, you’ll need to ensure that the dumps occur during a period
of inactivity.

Consequently, most production system cutovers involve sophisticated synchroniza‐
tion mechanisms between the source and the target system. In some cases, both
systems are run concurrently, and the application layer switches from one system to
another with no downtime or inconsistency. There’s no one single correct way to do
this and no off-the-shelf solution that can perform this sort of synchronization and
seamless switchover. Each conversion usually involves some bespoke synchronization
mechanism.

We can’t cover every conceivable scenario here, but let’s look at a simplified example
in which we keep data in a CockroachDB database in sync with data in a PostgreSQL
database before a seamless switchover.

Let’s say we are migrating from the DVDRental sample database in PostgreSQL. Our
DVD business is booming (who’d have thought?), and we need to move to a more
scalable database platform.

The most important table in our application is the rental table. We can prevent
updates to other tables for short intervals, but without rentals, we have no revenue. So
we need to make sure that we can continue to add new rental records continuously
until we are ready to switch over.

We can extract the PostgreSQL CREATE TABLE statement using the following
command:

pg_dump -s dvdrental -t rental

A few edits to the DDL results in a CockroachDB-compatible table:

CREATE TABLE rental (
 rental_id integer PRIMARY KEY,
 rental_date timestamp without time zone NOT NULL,
 inventory_id integer NOT NULL,
 customer_id smallint NOT NULL,
 return_date timestamp without time zone,

Migrating from Another Database | 237

3 The PostgreSQL configuration parameter wal_level must be set to “logical” for this command to succeed.

 staff_id smallint NOT NULL,
 last_update timestamp without time zone DEFAULT now() NOT NULL
);

To ensure that we can add new rows to the PostgreSQL version of that table dur‐
ing the transition, we are going to set up a CDC stream between PostgreSQL and
CockroachDB.

The following statement creates a CDC “slot” in PostgreSQL:3

dvdrental=#
SELECT * FROM
 pg_create_logical_replication_slot('cockroach_migration', 'wal2json');

 slot_name | xlog_position
---------------------+---------------
 cockroach_migration | 0/1CF4F60

We’re using the wal2json plug-in (https://cockroa.ch/3KaSKMy) to format the change
records in an easy-to-parse JSON structure. This package might need to be installed
on a default PostgreSQL deployment.

The first parameter to pg_create_logical_replication_slot is a unique name we
are going to use to access the CDC stream. The second parameter specifies a plug-in
that can be used to control how the change data feed is formatted and accessed. The
test_decoding plug-in is included in the base PostgreSQL distribution; it translates
the changefeed to text format, which we will use in our synchronization program.

Once the changefeed is created, we can use the pg_logical_slow_peek_changes
function to pull change records from the stream. For instance:

dvdrental=#
SELECT *
FROM pg_logical_slot_get_changes('cockroach_migration',
 NULL, NULL);

location | xid | data
-----------+-----+-------------------
 0/1CFECC0 | 742 | {"change":[{"kind":"insert","schema":"public",
 "table":"rental",
"columnnames":["rental_id","rental_date","inventory_id","customer_id",
"return_date","staff_id","last_update"],
"columntypes":["integer",
"timestamp without time zone","integer","smallint",
"timestamp without time zone","smallint",
"timestamp without time zone"],
"columnvalues":[16051,"2021-08-19 08:28:52.748047",
367,130,null,1,"2006-02-15 21:30:53"]}]}

238 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3KaSKMy

You can see in the output a JSON document containing details about a new row in
the rental table.

Our top-level migrate and synchronize logic might look something like this (in
JavaScript):

await pgConnection.connect();
await crdbConnection.connect();

await startReplication();
await copyTable();
while (true) {
 await syncChanges();
}

We create a connection to PostgreSQL and to CockroachDB. We commence the
PostgreSQL CDC stream, copy the table data from PostgreSQL to CockroachDB,
then continuously synchronize any changes from PostgreSQL to CockroachDB.

The startReplication function is simple—it creates the replication slot that we’re
going to use to capture the changefeed:

async function startReplication() {
 try {
 const replicationStatus = await pgConnection.query(
 `SELECT *
 FROM pg_create_logical_replication_slot(
 'cockroach_migration', 'wal2json')`
);
 console.log(replicationStatus.rows[0]);
 } catch (error) {
 console.warn(
 'Warning ', error.message
);
 }
}

The copyTable() function copies data from PostgreSQL to CockroachDB using
SELECT and INSERT statements. You could substitute a more performant extract and
load procedure using the principles outlined earlier in the chapter.

async function copyTable() {
 const pgData = await pgConnection.query('SELECT * from rental');
 for (let rowNo = 0; rowNo < pgData.rows.length; rowNo += 1) {
 const row = pgData.rows[rowNo];
 await crdbConnection.query(
 `INSERT INTO rental (rental_id,rental_date,inventory_id,
 customer_id,return_date,staff_id,last_update)
 VALUES ($1,$2,$3,$4,$5,$6,$7)`,
 [row.rental_id, row.rental_date, row.inventory_id, row.customer_id,

Migrating from Another Database | 239

 row.return_date, row.staff_id, row.last_update]
);
 }
 console.log(pgData.rows.length, ' rows copied');
}

Once the bulk of the data is migrated, we can keep the CockroachDB database in sync
with PostgreSQL by monitoring the changefeed and issuing INSERTs or UPSERTs as
appropriate. Each time we call pg_logical_slot_get_changes, we can retrieve one
or more rows in the output:

async function syncChanges() {
 const changeSQL = await pgConnection.query(
 `SELECT * FROM pg_logical_slot_get_changes(
 'cockroach_migration', NULL, NULL)`
);
 for (rowNo = 0; rowNo < changeSQL.rows.length; rowNo++) {
 const changePayload = changeSQL.rows[rowNo];
 await processSingleChange(changePayload);
 }
}

We pull change records using the pg_logical_slot_get_changes function. Note that
this function removes change records once they are retrieved, so we never process the
same record twice. However, we need to be sure that we definitely apply the change.
There’s no transactional consistency available to us here!

In the following example we process a single change record. This simplified imple‐
mentation handles only INSERTs into the rental table but could be modified to
dynamically process any changes to any table:

async function processSingleChange(rawPayload) {
 const jsonPayload = JSON.parse(rawPayload.data);
 if ('change' in jsonPayload) {
 for (let cindx = 0; cindx < jsonPayload.change.length; cindx++) {
 const changeData = jsonPayload.change[cindx];
 const columnCount = changeData.columnnames.length;
 if (changeData.kind === 'insert' && changeData.table === 'rental') {
 const newValue = {}; // Object containing CDC row values
 for (let colno = 0; colno < columnCount; colno++) {
 const columnName = changeData.columnnames[colno];
 newValue[columnName] = changeData.columnvalues[colno];
 }
 const insertSQL = `
 UPSERT into rental
 (rental_id,rental_date,inventory_id,
 customer_id,return_date,staff_id,last_update)
 VALUES ($1,$2,$3,$4,$5,$6,$7)`;
 const result = await crdbConnection.query(insertSQL,
 [newValue.rental_id, newValue.rental_date,
 newValue.inventory_id, newValue.customer_id,
 newValue.return_date, newValue.staff_id,

240 | Chapter 7: Application Migration and Integration

 newValue.last_update]);
 console.log(result.rowCount, 'rows', result.command + 'ed');
 }
 }
 }
}

This code is a little hard to read but essentially retrieves the JSON structure contain‐
ing the new row from PostgreSQL, unpacks it, and inserts it into CockroachDB.

Now, both databases can run in parallel, and all new rentals will be automatically
copied from PostgreSQL to CockroachDB. When we’re ready to switch over, we can
switch the application over from PostgreSQL to CockroachDB and shut down the
PostgreSQL database.

This is a very simplified example of database synchronization. There’s a lot more we
would need to do in real life:

• We should implement code to synchronize other tables.•
• We should implement a retry mechanism for retryable errors.•
• We should handle UPDATEs and DELETEs as well as INSERTs.•
• We may need to consider using bulk inserts and parallel threads of execution to•

ensure that the CockroachDB target does not fall behind the PostgreSQL source.
• If the application is distributed, there may be a need to prevent inserts from•

hitting the PostgreSQL database after inserts commence on the CockroachDB
side. All inserts into PostgreSQL should cease before any inserts commence on
CockroachDB.

When a CDC option is not available, you might be able to implement a similar
functionality using database triggers. For example, if you wanted to synchronize with
an Oracle database, you could write database triggers that capture changes to source
tables and send these to a STAGING table.

Updating Application Code
Migrating the database schema and data is obviously only one step in migrating to
CockroachDB. Application code will almost certainly have to change as well. The
following considerations are important:

• Convert the application to use a PostgreSQL-compatible driver. For instance, if•
you’re using the Node.js oracledb driver, you will want to convert your applica‐
tion to the pg driver. We discussed the range of compatible drivers available
for each language in Chapter 6. This won’t be necessary if your application is
currently using PostgreSQL.

Migrating from Another Database | 241

• If your application uses an ORM, then it needs to move to an ORM that is•
PostgreSQL-compatible. Most ORMs support PostgreSQL already, so this might
be only a minor concern. Chapter 6 discusses ORMs that are compatible with
CockroachDB.

• You should modify any SQL calls that use non-PostgreSQL syntax. For example,•
Oracle uses SYSDATE to refer to the current time, so references to SYSDATE should
be changed to use NOW() or CURRENT_TIMESTAMP. Similarly, Oracle has a unique
syntax for hierarchical queries and requires a “FROM dual” for SELECTs that oper‐
ate on no data.

• It should go without saying that you should test your application thoroughly•
after any migration. Your testing should ensure that the migrated application is
working correctly and that performance requirements are met.

The migration from one SQL database to another is certainly less involved than
migrating to or from a SQL database to a non-SQL system such as MongoDB or
Cassandra. Nevertheless, migrating from one database system to another is far from
trivial and should be approached seriously.

Mainframe Migrations
Even though they are widely considered to be legacy, it’s believed that around 90% of
the world’s global card transactions (https://cockroa.ch/3MWRWy8) are processed by
mainframes. The overwhelming majority of mainframe users in the banking industry
have plans to migrate their workloads out of the mainframe and into the cloud.

CockroachDB excels in mainframe migrations due to its compatibility with main‐
frame CPU architectures like S/390X and z/Architecture, its ability to operate across
machines with different CPU architectures, and its capacity for horizontal scaling.

There are numerous options available for customers wishing to migrate off main‐
frame with CockroachDB, with the options outlined in “Migrating from Another
Database” on page 224 being equally suited to mainframe migrations.

A happy side effect of CockroachDB’s ability to horizontally scale and run across mul‐
tiple CPU architectures is zero-downtime “stretch migrations.” A stretch migration
from mainframe is simply a migration whereby CockroachDB is deployed across
both your mainframe and your target environment (e.g., the cloud). The process
might look as follows:

1. Create a CockroachDB cluster with nodes on your existing mainframe architec‐1.
ture (https://cockroa.ch/4e7Ns3s).

2. Migrate data from your existing mainframe database (e.g., Db2) into2.
CockroachDB.

242 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3MWRWy8
https://cockroa.ch/3MWRWy8
https://cockroa.ch/4e7Ns3s
https://cockroa.ch/4e7Ns3s

3. Start CockroachDB nodes in your target environment and have them join your3.
mainframe cluster.

4. One by one, decommission the nodes in your mainframe until only your cloud4.
nodes remain.

Exporting CockroachDB Data
So far we’ve seen how to bring data into CockroachDB. However, if we have an
application that wants to consume CockroachDB data, we have a number of options:

• We can simply write a program that reads data using SELECT statements and•
outputs it to files or feeds it to APIs.

• We can use the EXPORT command to dump data into flat files.•
• We can use CDC to automatically capture changes to nominated tables.•

We spent a lot of time looking at the CockroachDB SELECT command and
CockroachDB-compatible drivers in Chapters 4 and 6. Let’s look now at how we
can use the EXPORT command to unload data.

We introduced the EXPORT command in Chapter 5. The syntax of EXPORT is shown in
Figure 7-3.

Figure 7-3. EXPORT statement syntax

EXPORT can write data to any of the file sources we discussed earlier in the con‐
text of IMPORT INTO. It can harness EXTERNAL CONNECTION URIs (e.g., external://
some_s3_bucket) to prevent database operators from handling sensitive credentials.

Here’s an export of the rides table to nodelocal storage:

movr>
 EXPORT into csv 'nodelocal://self/rides'
 WITH nullas='' FROM TABLE rides;

 filename | rows | bytes
--+-------+----------
 export16976587190021a80000000000000001-n1.0.csv | 13409 | 2374556

Exporting CockroachDB Data | 243

As discussed earlier, nodelocal storage is located in a deployment-specific location.
On a single-node server, we might find it in the extern directory under the installa‐
tion location:

$ ls -l /usr/local/var/cockroach/extern/rides
total 4640
-rw------- 1 guyharrison admin 2374556 2 Aug 15:17
 export16976587190021a80000000000000001-n1.0.csv

We can also export data to cloud storage locations, such as an Amazon S3 bucket:

movr> EXPORT INTO CSV
"s3://cockroachdefinitiveguide/?
AWS_ACCESS_KEY_ID=my-access-key&
AWS_SECRET_ACCESS_KEY=my-secret-key"
WITH nullas='' FROM TABLE rides;

 filename | rows | bytes
--+-------+----------
 export169765eed62b37b00000000000000001-n1.0.csv | 13409 | 2374556
(1 row)

The EXPORT command can accept a SELECT statement that filters and projects the data
to be exported:

movr> EXPORT INTO CSV
'userfile://defaultdb.public.userfiles_guy/'
WITH nullas='' FROM
SELECT rider_id,start_time,end_time
 FROM rides WHERE city='amsterdam';
 filename | rows | bytes
--+------+--------
 export169766268b2faad80000000000000001-n1.0.csv | 154 | 10972
(1 row)

EXPORT provides some switches to control the formatting, compression, and chunking
of output. See the CockroachDB documentation (https://cockroa.ch/3uQAyRX) for
information about these options.

There is also a quick-and-dirty way to export data from CockroachDB in CSV
format. We can simply pass a SELECT statement to the CockroachDB shell and specify
the –-format=csv flag to request that the output be formatted as CSV:

$ cockroach sql -e "SELECT * from movr.rides;" \
--format=csv --url $CRDB_CLUSTER > rides.csv

244 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3uQAyRX

Change Data Capture
CDC is an interface that tracks changes to nominated tables and allows you to
respond to these changes or to forward them to an external system.

CockroachDB CDC comes in two forms:

• Core CDC allows you to stream changes to the host client. It’s a simple method•
to both test CDC statements inside a SQL session and stream those changes to a
downstream consumer.

• Enterprise CDC allows you to feed changes to downstream systems automati‐•
cally. These downstream sources can be messaging systems such as Kafka, cloud
storage such as S3, or a generic webhook.

• Core CDC allows you to stream changes to the host client. It’s a simple method•
to both test CDC statements inside a SQL session and stream those changes to a
downstream consumer.

• Enterprise CDC allows you to feed changes to downstream systems automati‐•
cally. These downstream sources can be messaging systems such as Kafka, cloud
storage such as S3, or a generic webhook.

Core Change Data Capture
Core CDC feeds changes to a client program that can then respond to these changes
as it sees fit. Let’s look at Core CDC in the CockroachDB shell.

The shell must be started with the --format=csv flag. Otherwise, the client keeps
waiting for the data from the changefeed to end so it can construct a nice ANSI table
display. Unfortunately, changefeeds stream indefinitely, so this backfires.

We also have to set the cluster setting kv.rangefeed.enabled to true.

CDC implies some performance overhead, estimated as between 5% and 10%. The
actual overhead will depend heavily on the transaction rate of the system. Systems
that are read-heavy might see less overhead:

$ cockroach sql --format csv --url $CRDB_CLUSTER
#
Welcome to the CockroachDB SQL shell.

defaultdb>
use movr;
SET

Time: 29ms total (execution 11ms / network 17ms)

Change Data Capture | 245

guy@sticky-donkey-8sd:26257/movr>
SET CLUSTER SETTING kv.rangefeed.enabled = true;
SET CLUSTER SETTING

Time: 35ms total (execution 18ms / network 17ms)

guy@sticky-donkey-8sd:26257/movr>
EXPERIMENTAL CHANGEFEED FOR rides;

table,key,value
rides,"[""washington dc"", ""547ae147-ae14-4c00-8000-0000000000a5""]",
"{""after"": {""city"": ""washington dc"",
""end_address"": ""59500 Eddie Union Apt. 0"",
""end_time"": ""2018-12-25T10:04:05"",
""id"": ""547ae147-ae14-4c00-8000-0000000000a5"",
""revenue"": 14.00,
 ""rider_id"": ""428f5c28-f5c2-4000-8000-00000000000d"",
""start_address"": ""81047 Perez Views"",
""start_time"": ""2018-12-25T03:04:05"",
""vehicle_city"": ""washington dc"",
""vehicle_id"": ""44444444-4444-4400-8000-000000000004""}}"
rides,"[""washington dc"", ""54fdf3b6-45a1-4c00-8000-0000000000a6""]",
"{""after"": {""city"": ""washington dc"",
""end_address"": ""78010 Woodard Plaza Apt. 9"", ""e

Initially, the changefeed displays all the current data in the table. It then will stop and
wait for any changes to be made to the table concerned. For example, if we perform
this transaction in a separate session:

guy@sticky-donkey-8sd:26257/movr>
update rides set revenue=revenue*1.1
 where id='c50d42a9-62ae-4501-97e0-38b9626502a1';
UPDATE 1

this new row of data will be emitted by the changefeed session:

rides,"[""amsterdam"", ""c50d42a9-62ae-4501-97e0-38b9626502a1""]",
"{""after"": {""city"": ""amsterdam"", ""end_address"": null,
""end_time"": null, ""id"": ""c50d42a9-62ae-4501-97e0-38b9626502a1"",
""revenue"": 10.00, ""rider_id"": ""ae147ae1-47ae-4800-8000-000000000022"",
""start_address"": ""54948 Direct St Via Apt. 28"",
""start_time"": ""2021-07-02T08:09:51.062777"",
""vehicle_city"": null,
""vehicle_id"": ""bbbbbbbb-bbbb-4800-8000-00000000000b""}}"

246 | Chapter 7: Application Migration and Integration

The changefeed will continue indefinitely. To terminate the changefeed, you would
hit Control-C from a SQL prompt or, in a programming language, simply stop
fetching new rows from the cursor.

The output of the CDC stream contains three columns. The first is the table
name; the second is the primary key of the row concerned; and the third is a
JSON-formatted representation of the row’s new value. We can add the timestamp—
and push out timestamps periodically during idle periods with the following syntax:

guy@sticky-donkey-8sd:26257/movr>
 EXPERIMENTAL CHANGEFEED FOR rides with updated, resolved='10s';
<snip>
rides,"[""amsterdam"", ""c5180421-4421-495f-ae7d-fa0ae08a7258""]",
"{""after"": {""city"": ""amsterdam"", ""end_address"": null,
""end_time"": null, ""id"": ""c5180421-4421-495f-ae7d-fa0ae08a7258"",
""revenue"": null, ""rider_id"": ""ae147ae1-47ae-4800-8000-000000000022"",
""start_address"": ""2 Pool St Via Apt. 28"",
""start_time"": ""2021-07-02T08:10:52.678899"",
""vehicle_city"": null,
""vehicle_id"": ""bbbbbbbb-bbbb-4800-8000-00000000000b""},
""updated"": ""1627285876946192391.0000000000""}"
NULL,NULL,"{""resolved"":""1627285883727456610.0000000000""}"
NULL,NULL,"{""resolved"":""1627285893772664924.0000000000""}"

The resolved attribute tracks the timestamp that the changefeed has “caught up to.”
So if you get a resolved message with timestamp t, you know that you have seen
every message committed before timestamp t. This can be used for duplicate tracking
or to downstream reorder messages. The resolved= flag specifies the minimum time
between resolved messages.

If you’ve been tracking the timestamps emitted by the changefeed, you can use that
timestamp to resume a changefeed at a later date. In the previous example, the most
recent timestamp is 1627285893772664924.0000000000, and we use that to resume
the feed:

guy@sticky-donkey-8sd:26257/movr>
EXPERIMENTAL CHANGEFEED FOR rides with updated, resolved='10s',
cursor='1627285913863014169.0000000000';

Change Data Capture | 247

Using the Changefeed Programmatically
There’s not much you can really do with a changefeed from the CockroachDB shell.
More typically, we would consume the changefeed programmatically. The following
code snippet shows an example of consuming the changefeed in Java:

Statement stmt = connection.createStatement();
stmt.setFetchSize(1);
stmt.execute("use movr");
ResultSet rs = stmt.executeQuery("EXPERIMENTAL CHANGEFEED
FOR rides WITH updated, resolved;");
while (rs.next()) {
 String tableName = rs.getString("table");
 String keyString="";
 byte[] keyBytes = rs.getBytes("key");
 if (!rs.wasNull()) { // Key is null for resolved messages
 keyString=new String(keyBytes, "UTF-8");;
 }
 JsonObject valueJson = JsonParser.parseString(
 new String(rs.getBytes("value"),
"UTF-8")).getAsJsonObject();
 if (valueJson.has("resolved")) {
 System.out.println("Resolved timestamp: "+valueJson.get("resolved"));
 } else if (valueJson.has("updated")) {
 System.out.printf("Table %s new value for key %s at %s is\n\t%s\n",
 tableName,keyString,valueJson.get("updated"),
 valueJson.get("after"));
 }
}

The setFetchSize assignment is important. By default, executeQuery will pull all
the rows from the result set before returning control to the program. Because change‐
feeds never return a last result, you need to set fetchSize to a value of 1 to prevent
the program from hanging and to ensure that rows are emitted as they are received.

This program simply prints the contents of the changefeed in a human-readable
format. However, in practice, we could use this code as the basis for something more
ambitious. For example:

• The changefeed could be written to flat files that will be loaded into a down‐•
stream system such as Hadoop or Snowflake.

• The changefeed could be examined to perform application-specific operations.•
For instance, every time a ride is commenced, we might send an alert to drivers
in the area or update a real-time map of rides in progress.

• The changefeed could be used to trigger a refresh or a materialized view or to•
manually update a summary table.

248 | Chapter 7: Application Migration and Integration

Changefeeds can be consumed by some—but not all—database drivers. Of the four
drivers we’ve focused on in this book, only Java and Go pgx work seamlessly with
changefeeds.

The default query interface in the Node.js pg package attempts to retrieve all query
results before allowing the program to navigate through the results. The following
example illustrates this approach:

async function main() {
 try {
 await connection.connect();
 const sql = 'EXPERIMENTAL CHANGEFEED FOR movr.rides WITH updated, resolved';
 const query = new pg.Query(sql);

 query.on('row', (row) => {
 console.log(row.value.toString());
 });
 query.on('error', (error) => console.eror(error));
 query.on('end', () => {
 console.log('Changefeed terminated');
 process.exit(0);
 });
 await connection.query(query);
 } catch (error) {
 console.error(error.stack);
 }
}

In the Python psycopg2 driver, all cursor calls—fetchmany(), fetchone(), fetch
all()—can be applied only to a cursor that has retrieved all the rows from the
query. As we’ve noted earlier, changefeeds never provide a “last” row. Consequently,
changefeeds cannot currently be used with psycopg2. Psycopg3 includes a stream
interface (https://cockroa.ch/3x3tt3m) that was experimental at the time of writing but
suitable for change streams.

Enterprise Change Data Capture
Enterprise CDC has the following advantages over Core CDC:

• Once created, an Enterprise CDC is continuously running within the•
CockroachDB cluster—you are not responsible for running the job or tracking
the last resolved timestamp.

• Enterprise CDC output can be directed to messaging systems like Kafka, cloud•
storage destinations like S3, or to webhook endpoints.

• Enterprise change streams operate in a distributed manner, doling out the work‐•
load across the cluster.

Change Data Capture | 249

https://cockroa.ch/3x3tt3m
https://cockroa.ch/3x3tt3m

CDC Queries
CDC queries (https://cockroa.ch/4gBvZSx) allow you to write changefeeds that trans‐
form rows before they’re emitted. This is useful for scenarios where consumers are
expecting events in a different format to how the data is stored.

In an ETL pipeline, CDC queries can be used to satisfy the extract and transform
phases. The changefeed extracts rows as they are inserted, updated, or deleted and
transforms them before publishing them.

In this section, we’ll create a CDC queries changefeed to transform rows before
publishing them to Kafka (and our downstream consumers).

First, we’ll create a cluster and start a local Kafka instance. For brevity, we’ll use Red‐
panda, which is Kafka-compatible but requires fewer components to run. We’ll start
Redpanda with Docker Compose, downloading the compose file from the Redpanda
docs:

curl -L -s https://cockroa.ch/redpanda_yaml \
 -o docker-compose.yml

docker compose up -d

cockroach demo --insecure --no-example-database

Next, we’ll create a table. This will be monitored by our CDC queries changefeed, and
its rows will be transformed before being published:

CREATE TABLE temperature_sensor (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 sensor_id UUID NOT NULL,
 temp_c DECIMAL NOT NULL,
 location GEOMETRY NOT NULL,
 enabled BOOL NOT NULL DEFAULT false,
 ts TIMESTAMPTZ NOT NULL DEFAULT now()
);

Then, we’ll create a topic and start consuming messages from it. For this, we can
harness Redpanda’s own rpk CLI:

docker exec -it redpanda-0 rpk topic create temperature
docker exec -it redpanda-0 rpk topic consume temperature

It’s now time to create the changefeed. Let’s assume the following transformation
rules for our CDC events:

• We only wish to publish events for enabled sensors.•
• Some consumers prefer to see temperatures in Celsius; others prefer Fahrenheit.•
• Consumers prefer to receive locations in Geohash format.•

250 | Chapter 7: Application Migration and Integration

https://cockroa.ch/4gBvZSx

CREATE CHANGEFEED INTO 'kafka://localhost:19092?topic_name=temperature' AS
 SELECT
 sensor_id,
 round(temp_c, 3) as temp_c,
 round((temp_c * 9/5) + 32, 3) AS temp_f,
 st_geohash(location) AS location,
 ts
 FROM temperature_sensor
 WHERE enabled;

Finally, we’ll insert some data to show CDC queries in action:

-- Data for a disabled sensor (won't be published).
INSERT INTO temperature_sensor (id, sensor_id, temp_c, location, enabled)
VALUES (
 '508424fa-0b5b-45f6-a907-d25831440256',
 '083845e8-de11-4209-bb4e-ad8a342d5103',
 12.401,
 'POINT(-0.1424448 51.5394466)',
 false
);

-- Data for an enabled sensor (will be published).
INSERT INTO temperature_sensor (id, sensor_id, temp_c, location, enabled)
VALUES (
 '12083e03-3ce5-411f-8f18-2e182f0aa391',
 '03370f5c-0620-4f9f-878e-3eb13441c8c1',
 12.485,
 'POINT(-0.0757618 51.5236428)',
 true
);

-- Enable the disabled sensor (publishing the original event).
UPDATE temperature_sensor
SET enabled = true
WHERE id = '508424fa-0b5b-45f6-a907-d25831440256';

Our rpk consumer will immediately receive the transformed rows from
CockroachDB, printing something similar to the following (note that our requested
transformations have been applied to the “value” field):

{
 "topic": "temperature",
 "key": "[\"12083e03-3ce5-411f-8f18-2e182f0aa391\"]",
 "value": "{\"location\": \"gcpvn78ffx5vj53...\", \"sensor_id\": \"0337...\"}",
 "timestamp": 1726136650509,
 "partition": 0,
 "offset": 0
}

Change Data Capture | 251

{
 "topic": "temperature",
 "key": "[\"508424fa-0b5b-45f6-a907-d25831440256\"]",
 "value": "{\"location\": \"gcpvhy2r0c1qqwm...\", \"sensor_id\": \"0838...\"}",
 "timestamp": 1726136654514,
 "partition": 0,
 "offset": 1
}

Using cloud sinks
Cloud sinks are storage destinations offered by public cloud systems. These are
defined using the same mechanisms that we discussed when using the IMPORT
INTO command. See the CockroachDB documentation (https://cockroa.ch/3j4U9se)
for details on specifying authentication and configuring these sinks.

Cloud sinks are a perfect mechanism for connecting two disparate systems that share
only the ability to connect to the internet and, in particular, are the perfect medium
for cloud-based applications. However, do bear in mind that there is a certain latency
involved in writing to cloud sinks—changes are batched to ensure that the destination
does not fill up with many tiny files, so some delay should be expected.

In this section, we’ll configure an enterprise changefeed for tables in the movr sample
database, which we will feed to an Amazon S3 bucket.

The syntax for creating a changefeed is relatively simple. You specify the Amazon S3
bucket name, optionally adding the AWS access key and secret access key. Access keys
may also be loaded from environment variables (https://cockroa.ch/3Jcq58C):

defaultdb>
CREATE CHANGEFEED FOR TABLE movr.rides,movr.users,movr.vehicles INTO
 's3://cockroachdefinitiveguide/movrFeed?
AWS_ACCESS_KEY_ID=my_access_key&
AWS_SECRET_ACCESS_KEY=my_secret_access_key
 WITH updated, resolved='10s';

 job_id

 680908602728218625
(1 row)

CREATE CHANGEFEED creates a background job that will continuously process the
changefeed. We can examine the job with the SHOW JOB or SHOW CHANGEFEED JOBS
command:

defaultdb> \set display_format=records;
defaultdb> show job 680908602728218625;

252 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3j4U9se
https://cockroa.ch/3Jcq58C

-[RECORD 1]
job_id | 680908602728218625
job_type | CHANGEFEED
description | CREATE CHANGEFEED FOR TABLE movr.rides, movr.users,
movr.vehicles INTO 's3://cockroachdefinitiveguide/movrFeed?
AWS_ACCESS_KEY_ID=my_access_key&
AWS_SECRET_ACCESS_KEY=redacted' WITH resolved = '10s', updated
statement |
user_name | root
status | running
running_status | running: resolved=1627867221.708330000,0
created | 2021-08-02 01:20:14.797451+00:00:00
started | 2021-08-02 01:20:15.014177+00:00:00
finished | NULL
modified | 2021-08-02 01:21:09.273081+00:00:00
fraction_completed | NULL
error |
coordinator_id | NULL

Time: 40ms total (execution 40ms / network 0ms)

We can also monitor jobs from the Jobs section of the admin console, as shown in
Figure 7-4.

Figure 7-4. Showing job status in the Jobs console

We are able to examine the changefeed output from the Amazon S3 console, as
shown in Figure 7-5.

Change Data Capture | 253

Figure 7-5. Changefeed files in the Amazon S3 console

Webhook sinks
CockroachDB’s CDC webhook sink allows changefeed messages to be published to
arbitrary HTTP endpoints. A webhook sink URL has the following format:

'webhook-https://{your-webhook-endpoint}?insecure_tls_skip_verify=true'

See the CockroachDB documentation (https://cockroa.ch/3j6haLe) for more
information.

Managing jobs
Once commenced, Enterprise changefeeds continue indefinitely. You can examine the
status and configuration of these jobs in the admin console, as shown in Figure 7-4,
or from using the SHOW JOBS command. Changefeeds can be paused or canceled
using PAUSE JOB or CANCEL JOB:

movr>
SELECT job_id,description,running_status
 FROM [show jobs]

254 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3j6haLe

 WHERE job_type='CHANGEFEED';

 job_id | description
---------------------+-----------------------
 680908602728218625 | CREATE CHANGEFEED FOR TABLE movr.rides, movr.users, ...
 680913149274030081 | CREATE CHANGEFEED FOR TABLE movr.rides, movr.users, ...
(2 rows)

Time: 29ms total (execution 28ms / network 0ms)

movr> pause job 680913149274030081;
PAUSE JOBS 1

Time: 57ms total (execution 56ms / network 0ms)

movr> cancel job 680913149274030081;
CANCEL JOBS 1

Paused changefeeds can be resumed with the RESUME JOB command.

Errors in the changefeed will normally be revealed by the SHOW JOB command. For
example, here we see a changefeed created with an invalid access key:

movr> \set display_format=records;
movr> SHOW JOB 680937397724741633;
-[RECORD 1]
job_id | 680937397724741633
job_type | CHANGEFEED
description | CREATE CHANGEFEED FOR TABLE movr.rides, movr.users,
movr.vehicles INTO
's3://cockroachdefinitiveguide/movrFeed?AWS_ACCESS_KEY_ID=notAValidKey
&AWS_SECRET_ACCESS_KEY=redacted' WITH resolved = '10s',
 updated
statement |
user_name | root
status | running
running_status | retryable error: retryable changefeed error: failed
to put s3 object: InvalidAccessKeyId: The AWS Access Key Id
you provided does not exist in our records.+
 | status code: 403, request id: D1QT6FJS60SNX461,
host id: k7e18TvfvGn5OdZJ3JJlywcApEjU+a3++ =
created | 2021-08-02 03:46:42.332999+00:00:00
started | 2021-08-02 03:46:42.587753+00:00:00
finished | NULL
modified | 2021-08-02 03:48:02.009441+00:00:00
fraction_completed | 0
error |
coordinator_id | NULL

Change Data Capture | 255

4 See the CockroachDB documentation (https://cockroa.ch/3LIR3Gr) for guidance on how to fine-tune topic
names.

Change Data Capture to Kafka
Enterprise changefeeds can be sent directly to Kafka topics, to which any interested
downstream system can subscribe.

The first step is to create a topic in Kafka matching the table names for which feeds
will be created.4 This can be done using the kafka-topics command:

$ kafka-topics --create --topic users --bootstrap-server localhost:9092
Created topic users.

You can also create topics using the Confluent Kafka console, as shown in Figure 7-6.

Figure 7-6. Creating a topic in the Confluent Kafka console

256 | Chapter 7: Application Migration and Integration

https://cockroa.ch/3LIR3Gr

Once the Kafka topics are created, you can create a changefeed with a Kafka URL as
the destination:

defaultdb> CREATE CHANGEFEED FOR TABLE movr.rides,movr.users INTO
 'kafka://localhost:9092'
 WITH updated, resolved='120s';

In this example, we have an unsecured Kafka server running on localhost. For
enterprise deployments of Kafka, you would normally configure a connection to a
broker and supply authentication credentials, as in this example:

'kafka://broker.address.com:9092?topic_prefix=bar_&tls_enabled=true&
ca_cert=LS0tLS1CRUdJTiBDRVJUSUZ&sasl_enabled=true&sasl_user=petee&
sasl_password=bones&sasl_mechanism=SASL-SCRAM-SHA-256'

Avro is an alternative data format for changefeeds with Kafka. Like JSON, Avro
documents are self-describing, but Avro data is more efficient and strongly typed.
When using an Avro feed, specify the avro format and the location of the Confluent
Kafka registry:

CREATE CHANGEFEED FOR TABLE movr.rides,movr.users
 INTO 'kafka://localhost:9092'
 WITH format = experimental_avro,
 confluent_schema_registry = 'http://localhost:8081';

 job_id

 679859316344848385
(1 row)

Duplicate Change Stream Messages
Changefeeds can feed duplicate messages in some circumstances—the communica‐
tion with the sink is not transactional, so in the event of a network error, a message
may be retransmitted. Furthermore, unless you have an append-only workload, there
could be many modification messages for a single row. You may have to implement
some programmatic logic to ensure that the changefeed data is accurately represented
in your target.

Change Data Capture to Pulsar
Changefeeds can also be sent to Apache Pulsar, a popular messaging/streaming plat‐
form. In this section, we’ll configure a changefeed to send messages to Pulsar.

First, we’ll need to create an instance of Pulsar. For this we’ll use Docker, and for
brevity we’ll run Pulsar in standalone mode:

docker run \
 -d \

Change Data Capture | 257

 -p 6650:6650 \
 --name pulsar \
 apachepulsar/pulsar:latest \
 bin/pulsar standalone

Next, we’ll spin up CockroachDB:

cockroach demo --insecure --no-example-database

Then create a table and configure the changefeed (note that CDC queries can also
be used, and—if you’d prefer—the kafka:// scheme can be used instead of the
pulsar:// scheme):

CREATE TABLE orders (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 customer_id UUID NOT NULL,
 total DECIMAL NOT NULL,
 ts TIMESTAMPTZ NOT NULL DEFAULT now()
);

CREATE CHANGEFEED FOR TABLE orders INTO 'pulsar://localhost:6650';

Next, we’ll create a Pulsar consumer. This will allow us to see the messages that
CockroachDB’s CDC produces.

docker run -it --rm \
 apachepulsar/pulsar:latest \
 bin/pulsar-client \
 --url "pulsar://host.docker.internal:6650" consume orders -s test -n 0

With everything up and running, we’re ready to start producing changefeeds. Let’s
create a variety of messages by way of INSERT, UPDATE, and DELETE:

INSERT INTO orders (id, customer_id, total) VALUES
(
 '2b74a3ad-864f-431d-8e3d-b8a20c6b4528',
 '28eb37d5-fd06-4283-bac6-a6d690c5da0b',
 10.99
),
(
 '705bb573-cea9-4ffd-83e5-c2ab17121c28',
 'e3ac589c-685d-4ead-a382-3fb1915ed166',
 10.99
),
(
 'b85f4c33-1685-4b74-9fb0-b62d1256ebf6',
 '501fdb41-b0d1-431c-a474-e9f6848a409e',
 10.99
);

UPDATE orders
SET total = 20.99
WHERE id = '2b74a3ad-864f-431d-8e3d-b8a20c6b4528';

258 | Chapter 7: Application Migration and Integration

DELETE FROM orders
WHERE id = '705bb573-cea9-4ffd-83e5-c2ab17121c28';

Once executed, our Pulsar consumer will receive changefeeds from CockroachDB
and print them to the console (note that we’ve truncated UUIDs and removed empty
fields for readability):

----- got message -----
content:{"Key":["b85f4c33..."],"Value":{"after": {"customer_id": "501fdb41...",
"id": "b85f4c33...", "total": 10.99, "ts": "2024-09-05T06:58:42.925856Z"}},
"Topic":"orders"}

----- got message -----
content:{"Key":["2b74a3ad..."],"Value":{"after": {"customer_id": "28eb37d5...",
"id": "2b74a3ad...", "total": 10.99, "ts": "2024-09-05T06:58:42.925856Z"}},
"Topic":"orders"}

----- got message -----
content:{"Key":["705bb573..."],"Value":{"after": {"customer_id": "e3ac589c...",
"id": "705bb573...", "total": 10.99, "ts": "2024-09-05T06:58:42.925856Z"}},
"Topic":"orders"}

----- got message -----
content:{"Key":["2b74a3ad..."],"Value":{"after": {"customer_id": "28eb37d5...",
"id": "2b74a3ad...", "total": 20.99, "ts": "2024-09-05T06:58:42.925856Z"}},
"Topic":"orders"}

----- got message -----
content:{"Key":["705bb573..."],"Value":{"after": null},
"Topic":"orders"}

As expected, we’ve consumed five messages, three for the INSERTs, one for the
UPDATE, and another for the DELETE.

Change Data Capture to Snowflake
Once data from a changefeed is sent to Kafka or cloud storage, it can be consumed
by a huge variety of downstream systems. Let’s consider one of those possible
integrations.

Like CockroachDB, Snowflake is a modern, cloud native SQL database. But where
CockroachDB is optimized for transactional workloads, Snowflake is optimized for
analytics. The two platforms are, therefore, very complementary.

We can use Enterprise CDC to automate the feeding of CockroachDB data changes
into a Snowflake data warehouse. To start, we create a changefeed into an Amazon S3
bucket:

defaultdb>
CREATE CHANGEFEED FOR TABLE movr.rides,movr.users,movr.vehicles INTO
 's3://cockroachdefinitiveguide/movrFeed?

Change Data Capture | 259

AWS_ACCESS_KEY_ID=my_access_key&
AWS_SECRET_ACCESS_KEY=my_secret_access_key'
 WITH updated, resolved='10s';
 job_id

 680913149274030081
(1 row)

Time: 373ms total (execution 373ms / network 0ms)

On the Snowflake side, we create a table to receive the changes. We use the VARIANT
data type, which can store the JSON-structured documents from the changefeed:

GHARRISO#COMPUTE_WH@(no database).(no schema)>
 CREATE DATABASE movrfeed;

+---+
status
Database MOVRFEED successfully created.
+---+
1 Row(s) produced. Time Elapsed: 0.309s

GHARRISO#COMPUTE_WH@MOVRFEED.PUBLIC>
CREATE TABLE movr (changefeed_record VARIANT);

+----------------------------------+
status
Table MOVR successfully created.
+----------------------------------+
1 Row(s) produced. Time Elapsed: 0.327s

We associate our Amazon S3 bucket with a Snowflake external stage. A stage is an
Amazon S3 bucket, Google Cloud Storage, or Azure container that contains data that
will be loaded into Snowflake:

GHARRISO#COMPUTE_WH@MOVRFEED.PUBLIC>
CREATE STAGE cdc_stage url='s3://cockroachdefinitiveguide/movrFeed/'
 credentials=(aws_key_id='my_access_key'
 aws_secret_key='kLKkZjS/my_secret_access_key')
 file_format = (type = json);

+--+
status
Stage area CDC_STAGE successfully created.
+--+
1 Row(s) produced. Time Elapsed: 1.020s

260 | Chapter 7: Application Migration and Integration

The next step is to connect the stage with the table that will receive the changefeed.
This is done by creating a Snowflake pipe. The pipe links the external stage with a
Snowflake table:

GHARRISO#COMPUTE_WH@MOVRFEED.PUBLIC>
CREATE PIPE cdc_pipe auto_ingest = true
 as
 COPY INTO movr FROM @cdc_stage;

+-------------------------------------+
status
Pipe CDC_PIPE successfully created.
+-------------------------------------+
1 Row(s) produced. Time Elapsed: 1.204s

We need to obtain the notification_channel associated with the pipe for the next
section. Use the SHOW PIPES command to extract pipe information:

GHARRISO#COMPUTE_WH@(no database).(no schema)>
!set output_format=expanded;
GHARRISO#COMPUTE_WH@(no database).(no schema)>
show pipes;
***************************[1]***************************
created_on | 2021-08-01 18:42:05.898 -0700
name | CDC_PIPE
database_name | MOVRFEED
schema_name | PUBLIC
definition | COPY INTO movr FROM @cdc_stage
owner | SYSADMIN
notification_channel | arn:aws:sqs:ap-southeast-2:757948394836:
sf-snowpipe-AIDA3A6J6VVKNSPOHQ7NX-EswnTwnSGDYt8ve10d5hnA
comment |
integration | NULL
pattern | NULL

1 Row(s) produced. Time Elapsed: 0.276s

The notification channel is used to trigger data loads from the Amazon S3 bucket
into Snowflake. We want to configure the Amazon S3 bucket so that every time a
change is made to the bucket, it notifies the pipe.

From the Amazon S3 bucket properties, find the “Event notifications” section and
click “Create event notification” (Figure 7-7).

Change Data Capture | 261

Figure 7-7. Creating a topic in the Amazon S3 console

Under “Events types,” specify all the object create events (Figure 7-8).

Figure 7-8. Amazon S3 event types for event notification

Finally, in the Destination section, specify “SQS queue” as the destination and paste
in the notification_channel value from the Snowflake SHOW PIPES command
(Figure 7-9).

262 | Chapter 7: Application Migration and Integration

Figure 7-9. Amazon S3 event destination

We’ve now hooked up a changefeed to an Amazon S3 bucket and the Amazon S3
bucket to a Snowflake pipe. If we query the Snowflake movr table, we can see it now
contains the changefeed records that have been created as changes to the movr tables
are processed:

GHARRISO#COMPUTE_WH@MOVRFEED.PUBLIC>
select * from movr limit 10;
+--+
CHANGEFEED_RECORD
{
"after": {
"city": "rome",
"end_address": null,
"end_time": null,
"id": "000288ee-56e9-42f3-9991-9831a668c76a",
"revenue": null,
"rider_id": "cfeb35ff-a826-439e-83da-c633a158315d",
"start_address": "54948 Pool St Via Apt. 28",
"start_time": "2021-07-02T07:47:58.526734",
"vehicle_city": null,
"vehicle_id": "e9f53976-9fc0-4a7a-b049-34b6ee286be7"
},

Change Data Capture | 263

| "key": [|
| "rome", |
| "000288ee-56e9-42f3-9991-9831a668c76a" |
|], |
| "updated": "1627871552959954000.0000000000" |
| }

Summary
In this chapter, we looked at how to migrate to CockroachDB and how to integrate
CockroachDB with other systems.

CockroachDB’s MOLT tools simplify the process of migrating to CockroachDB.
They allow you to migrate schemas and data, verify the integrity of migrated data,
and perform cutovers from your existing database to CockroachDB with minimal
disruption.

CockroachDB provides import facilities that allow data to be loaded from flat files.
These files can be loaded to storage locations within the cluster—userfile and node‐
local storage—or from cloud storage locations such as S3, Google Cloud Storage, or
Azure containers.

Migrating from another SQL database to CockroachDB is generally a three-stage
project. First, we extract DDL from the source systems and modify it to support
CockroachDB syntax and best practices. Second, we dump data from the source
system into a flat-file format. Finally, we import the data into a CockroachDB data‐
base. For a production system, there are usually additional configurations around
synchronization and switchover.

We can export data from CockroachDB to flat files using the EXPORT command.
Alternatively, we can capture changes to nominated tables with CDC. Core CDC
allows these changes to be managed programmatically, while Enterprise CDC allows
changefeeds to be automatically forwarded to cloud storage or to Kafka.

In the next chapter, we’ll learn how to find and fix slow queries, harnessing constructs
like indexes and computed columns to maximize query performance.

264 | Chapter 7: Application Migration and Integration

CHAPTER 8

SQL Tuning

CockroachDB was designed to be a scalable, distributed, transactional database sys‐
tem. It is capable of delivering the demands of high-performance, highly available,
globally distributed applications. However, it’s not a magic box that can eliminate all
inefficiencies in application code or schema design. From time to time, developers
and applications will send SQL statements to a database that do not run as fast as
they should. Consequently, since the dawn of time—or at least the emergence of
relational databases—SQL tuning has been a major concern for database developers
and administrators.

In this chapter, we’ll explain how CockroachDB’s intelligent cost-based optimizer
(https://cockroa.ch/4h5sK5y) optimizes SQL statements and how you can help
CockroachDB make these queries run faster. We’ll also show you how to find queries
that might need tuning, how to determine if those SQL statements are optimized, and
discuss ways of making them faster.

Finding Slow SQL
Assuming that we have up-to-date and comprehensive query statistics in place, we
should monitor our cluster to identify any problematic SQL statements.

Many applications will log SQL statements or logical transaction times and provide
insight into the SQL statements that are performing poorly. However, if we don’t have
application-level tracing, CockroachDB itself can provide information about overall
SQL execution times.

265

https://cockroa.ch/4h5sK5y

For CockroachDB Cloud clusters, the best places to start are as follows:

The Statements page
Accessible via https://cockroachlabs.cloud/cluster/YOUR_CLUSTER_ID/sql-acti
vity, this page lists SQL statements that have run on the server together with
basic execution statistics. We can sort by average statement time or cumulative
execution time to identify SQL statements that may require attention. Clicking
on a specific SQL statement takes us to the Statement Details.

The Workload Insights page
Accessible via https://cockroachlabs.cloud/cluster/YOUR_CLUSTER_ID/insights?
tab=Workload+Insights, this page lists statement and transaction executions, their
status, and whether they encountered retries, slow execution, or suboptimal
plans. As with the Statements page, Workload Insights are sortable, and clicking
on an insight opens a detailed breakdown.

The Schema Insights page
Accessible via https://cockroachlabs.cloud/cluster/YOUR_CLUSTER_ID/insights?
tab=Schema+Insights, this page lists opportunities to improve your database
schema objects, highlighting the need to add missing indexes, update suboptimal
indexes, or remove unused indexes.

For Self-Hosted clusters, the CockroachDB Console (exposed on port 8080 by
default) provides a wealth of insights, including insights available for CockroachDB
Cloud clusters.

There are a few other ways we can identify SQL statements that might need tuning.
The SHOW STATEMENTS command shows SQL statements currently running and may
show long-running queries that are currently consuming resources.

CockroachDB can log “slow” queries to the log (https://cockroa.ch/3LEKEfv) by
setting the cluster variable sql.log.slow_query.latency_threshold to a nonzero
value. This will cause queries exceeding the threshold to emit records to a slow query
log. The log records will look like this:

I210809 07:47:09.663658 12467601 10@util/log/event_log.go:32 ⋮
 [n1,client=‹192.168.0.245:57136›,hostnossl,user=root] 17
={"Timestamp":1628495229538628000,"EventType":"slow_query","Statement":
"‹SELECT city, id FROM \"\".\"\".vehicles WHERE city = $1›",
"User":"‹root›","ApplicationName":"‹movr›","PlaceholderValues":
["‹'amsterdam'›"],"ExecMode":"exec","NumRows":25,
"Age":125.039,"TxnCounter":11310}

Identifying slow-running SQL statements in the log is not straightforward. You will
need to somehow aggregate the entries to identify repetitive SQL statements, and it
can be difficult to access these logs if you don’t have access to the server (which you
won’t in CockroachDB Cloud without exporting them (https://cockroa.ch/4gDfl5k)).

266 | Chapter 8: SQL Tuning

https://cockroa.ch/3LEKEfv
https://cockroa.ch/4gDfl5k

Regardless of how you do it, finding SQL that is failing to deliver acceptable perfor‐
mance is a critical task. Now that we’ve found it, let’s see how we tune it.

Explaining and Tracing SQL
When we find a SQL statement that is underperforming, the first thing to do is
to determine exactly how the SQL is being executed. This is where the EXPLAIN
command comes in.

The EXPLAIN command syntax is shown in Figure 8-1.

Figure 8-1. EXPLAIN statement syntax

EXPLAIN reveals exactly how the optimizer decided that the SQL statement could be
resolved.

Let’s look at a simple example. The following shows an EXPLAIN for a simple SELECT
statement with a single table and a single WHERE clause condition:

movr> EXPLAIN SELECT *
FROM rides
WHERE end_address = '66037 Belinda Plaza Apt.93';

 info

 distribution: full
 vectorized: true

 • filter
 │ estimated row count: 1
 │ filter: end_address = '66037 Belinda Plaza Apt. 93'
 │
 └── • scan

Explaining and Tracing SQL | 267

 estimated row count: 20,000,063 (100% of the table;
 stats collected 4 days ago)
 table: rides@rides_pkey
 spans: FULL SCAN

 index recommendations: 1
 1. type: index creation
 SQL command: CREATE INDEX ON movr.public.rides (end_address) STORING
 (vehicle_city, rider_id, vehicle_id, start_address, start_time,
 end_time, revenue);

The output of EXPLAIN is generally read “bottom-up” and “inside-out.” The most
heavily indented statements, which are almost invariably those at the bottom of the
plan, are read first. So, in the preceding example, the first operation is scan followed
by filter.

The scan step involves a read of one or more rows in a table. In this case, the table is
denoted as rides@rides_pkey—that is, the base table for rides. spans: FULL SCAN
tells us that every row in that table must be read. The output from the scan step is
passed to a filter clause that removes any row not matching the filter condition (in
this case, the end_address).

Each step includes estimated row counts—these are based on the optimizer statistics
that we discussed in the previous section.

As the example shows, CockroachDB will make index recommendations for a query
where possible, suggesting the columns to index and any columns to store (or
“cover”) within it.

We’ll discuss the details of SQL tuning later in the chapter. For now, it’s worth noting
that full table scans on a table of nontrivial size are generally undesirable. So, if we
are concerned about the execution time of the statement, we would probably want to
avoid the full table scan by creating an index.

Let’s look now at a query plan for a statement that uses an index. Example 8-1 shows
an execution plan that involves an index scan.

Example 8-1. An EXPLAIN on an indexed query

movr> EXPLAIN SELECT rider_id
FROM rides
WHERE vehicle_id = 'aaaaaaaa-aaaa-4800-8000-00000000000a'
AND vehicle_city = 'amsterdam'
AND end_address = '63002 Sheila Fall';

268 | Chapter 8: SQL Tuning

 info

 distribution: local
 vectorized: true

 • filter
 │ estimated row count: 1
 │ filter: end_address = '63002 Sheila Fall'
 │
 └── • index join
 │ estimated row count: 888
 │ table: rides@rides_pkey
 │
 └── • scan
 estimated row count: 888 (<0.01% of the table;
 stats collected 2 hours ago)
 table: rides@rides_auto_index_fk_vehicle_city_ref_vehicles
 spans: [/'amsterdam'/'aaaaaaaa-aaaa-4800-8000-00000000000a'—
 /'amsterdam'/'aaaaaaaa-aaaa-4800-8000-00000000000a']

 index recommendations: 1
 1. type: index creation
 SQL command: CREATE INDEX ON movr.public.rides (vehicle_id,
 vehicle_city, end_address) STORING (rider_id);

Looking at Example 8-1 from the inside out, we see three steps:

1. A scan step, but this time the “table” is the rides_auto_index_fk_vehicle1.
_city_ref_vehicles index. The span shows us that this index was used to find
all rows with a specific vehicle_city and vehicle_id combination.

2. The next step is an index join. An index join connects index entries with2.
the corresponding entry in the base table. In this case, we are retrieving the
rows for the matching vehicle_city and vehicle_id combination to obtain the
corresponding rider_id.

3. The filter condition eliminates rows that don’t match the specific end_address3.
value.

Figure 8-2 diagrammatically represents these steps.

Explaining and Tracing SQL | 269

Figure 8-2. Diagrammatic representation of execution plan from Example 8-1

Although this plan uses an index, it’s far from optimal. The index brings us only
part of the way to the answer, since we still have to retrieve rows from the base table
and filter out the addresses that don’t match those shown in the WHERE clause. This
query would be better optimized by a covering index on vehicle_city, vehicle_id,
end_address, and rider_id, which is exactly what CockroachDB is recommending
in the EXPLAIN output.

For instance, if we create an index as follows:

movr> CREATE INDEX rides_vehicle_address_rider_ix1
 ON rides(vehicle_city,vehicle_id,end_address)
 STORING (rider_id);

the execution plan will show just a single scan operation:

 • scan
 estimated row count: 1 (<0.01% of the table; stats collected 6 minutes ago)
 table: rides@rides_vehicle_address_rider_ix1
 spans: [/'amsterdam'/'aaaaaaaa-aaaa-...-00000000000a'/'63002 Sheila Fall'
- /'amsterdam'/'aaaaaaaa-aaaa-4800-8000-00000000000a'/'63002 Sheila Fall']

The new index can satisfy the query without the index_join or filter operations.
Now let’s look at a more complex example. Example 8-2 shows a SQL statement that
includes a JOIN and ORDER BY.

Example 8-2. An EXPLAIN for a JOIN operation

movr> EXPLAIN SELECT *
FROM rides r
JOIN vehicles v ON
 (r.vehicle_city = v.city

270 | Chapter 8: SQL Tuning

 AND r.vehicle_id = v.id)
WHERE vehicle_id = 'aaaaaaaa-aaaa-4800-8000-00000000000a'
AND vehicle_city = 'amsterdam'
AND end_address = '63002 Sheila Fall'
ORDER BY start_address;
 info

 distribution: full
 vectorized: true

 • sort
 │ estimated row count: 1
 │ order: +start_address
 │
 └── • lookup join
 │ estimated row count: 1
 │ table: rides@rides_pkey
 │ equality: (city, id) = (city,id)
 │ equality cols are key
 │ pred: end_address = '63002 Sheila Fall'
 │
 └── • lookup join
 │ estimated row count: 823
 │ table: rides@rides_auto_index_fk_vehicle_city_ref_vehicles
 │ equality: (city, id) = (vehicle_city,vehicle_id)
 │ pred: (vehicle_id = 'aaaaaaaa-aaaa-4800-8000-00000000000a')
 AND (vehicle_city = 'amsterdam')
 │
 └── • scan
 estimated row count: 1 (<0.01% of the table;
 stats collected 4 days ago)
 table: vehicles@primary
 spans: [/'amsterdam'/'aaaaaaaa-aaaa-4800-8000-00000000000a'—
 /'amsterdam'/'aaaaaaaa-aaaa-4800-8000-00000000000a']

The four steps in this query are:

1. The primary key of the vehicles table index is used to retrieve a specific city/1.
vehicle location.

2. That vehicles row is joined to the rides foreign key index to obtain the primary2.
key for rides that used that vehicle.

3. We then JOIN to the rides table itself to retrieve the rest of the RIDE columns.3.
During that step, we also apply the filter condition on the end_address.

4. Finally, we sort the results on start_address.4.

Figure 8-3 illustrates the execution plan.

Explaining and Tracing SQL | 271

Figure 8-3. Diagrammatic representation of execution plan from Example 8-2

We’ll elaborate further on EXPLAIN plan interpretation and optimization later in the
chapter.

EXPLAIN ANALYZE
EXPLAIN ANALYZE is a more powerful variant of the EXPLAIN command. EXPLAIN tells
you what the optimizer thinks will happen if it runs the command, while EXPLAIN
ANALYZE runs the command and tells you what actually happened.

The syntax for EXPLAIN ANALYZE is shown in Figure 8-4.

Figure 8-4. EXPLAIN ANALYZE statement syntax

272 | Chapter 8: SQL Tuning

Let’s look at the output of EXPLAIN ANALYZE for a relatively simple SQL statement:

movr> EXPLAIN ANALYZE
SELECT *
FROM vehicles v
WHERE v.ext@> '{"brand":"Fuji"}'
AND v.city = 'paris'
AND v.status = 'in_use';
 info

 planning time: 568µs
 execution time: 9ms
 distribution: local
 vectorized: true
 rows read from KV: 2,240 (348 KiB)
 cumulative time spent in KV: 6ms
 maximum memory usage: 380 KiB
 network usage: 0 B (0 messages)
 regions: gcp-australia-southeast1

 • filter
 │ nodes: n7
 │ regions: gcp-australia-southeast1
 │ actual row count: 63
 │ estimated row count: 136
 │ filter: (ext @> '{"brand": "Fuji"}') AND (status = 'in_use')
 │
 └── • scan
 nodes: n7
 regions: gcp-australia-southeast1
 actual row count: 2,240
 KV rows read: 2,240
 KV bytes read: 348 KiB
 estimated row count: 2,220 (11% of the table; stats collected 5 days ago)
 table: vehicles@primary
 spans: [/'paris'—/'paris']

As with EXPLAIN, EXPLAIN ANALYZE shows us the execution plan, and for each step,
the estimated row counts. It also shows the actual row counts together with the
number of operations performed at the storage layer. In addition, it shows the actual
execution time and memory usage for the query.

Actual row counts are better than estimated row counts and real elapsed times
are also very useful. However, the downside of EXPLAIN ANALYZE is that because it
actually executes the operations on the cluster, it takes time and generates real load.
For a time-consuming SQL statement, this might be undesirable.

EXPLAIN Options
EXPLAIN takes a number of modifiers that can enhance or change the EXPLAIN output.
You will rarely use these, but they are still important tools in your tuning toolbox.

Explaining and Tracing SQL | 273

The VERBOSE flag can be added to EXPLAIN with or without any additional options
and, as you might expect, increases the amount of output:

movr> EXPLAIN (VERBOSE) SELECT *
FROM rides
WHERE end_address = '66037 Belinda Plaza Apt. 93';
 info

 distribution: full
 vectorized: true

 • filter
 │ columns: (id, city, vehicle_city, rider_id, vehicle_id,
 start_address, end_address, start_time, end_time, revenue)
 │ estimated row count: 0
 │ filter: end_address = '66037 Belinda Plaza Apt. 93'
 │
 └── • scan
 columns: (id, city, vehicle_city, rider_id, vehicle_id,
 start_address, end_address, start_time, end_time, revenue)
 estimated row count: 13,409 (100% of the table;
 stats collected 9 days ago)
 table: rides@rides_pkey
 spans: FULL SCAN

The OPT option displays the query plan tree generated by the cost-based optimizer.
On its own, this is a simplified version of a normal EXPLAIN, but by specifying both
OPT and VERBOSE, EXPLAIN will expose some of the cost calculations used in the plan.
To include all details used by the optimizer, including statistics, use OPT and ENV. This
option will generate a URL that you can use to print a detailed optimizer report.

Here’s an example of an OPT,VERBOSE EXPLAIN. The bulky histogram information has
been removed:

movr> EXPLAIN (OPT,VERBOSE)
SELECT start_address
FROM rides
WHERE end_address = '63002 Sheila Fall';
 info

 project
 ├── columns: start_address:6
 ├── stats: [rows=0.0468389869]
 ├── cost: 15167.4105
 ├── prune: (6)
 └── select
 ├── columns: start_address:6 end_address:7
 ├── stats: [rows=0.0468389869, distinct(7)=0.0468389869, null(7)=0]
 │ histogram(7)= 0 0.046839
 │ <--- '63002 Sheila Fall'
 ├── cost: 15167.4
 ├── fd: ()-->(7)

274 | Chapter 8: SQL Tuning

 ├── scan rides
 │ ├── columns: start_address:6 end_address:7
 │ ├── stats: [rows=13409, distinct(7)=627, null(7)=12781]
 │ │ histogram(7)= 0 12781
 <--- NULL --- '10093 Julie Prairie' -----
 '99954 Sarah Rapids'
 │ ├── cost: 15033.29
 │ └── prune: (6,7)
 └── filters
 └── end_address:7 = '63002 Sheila Fall' [outer=(7),
 constraints=(/7: [/'63002 Sheila Fall
 '—/'63002 Sheila Fall']; tight), fd=()-->(7)]

The DISTSQL option generates a URL that can be used to generate a distributed SQL
execution map. For example:

movr> EXPLAIN (DISTSQL) SELECT *
FROM rides
WHERE end_address = '63002 Sheila Fall';
 info
--
 distribution: full
 vectorized: true

 • filter
 │ estimated row count: 1
 │ filter: end_address = '63002 Sheila Fall'
 │
 └── • scan
 estimated row count: 20,000,063 (100% of the table;
 stats collected 4 days ago)
 table: rides@rides_pkey
 spans: FULL SCAN

 Diagram: https://cockroachdb.github.io/distsqlplan/decode.html#eJzE..._8GK5vg=

Following the link generates a diagram such as that shown in Figure 8-5.

Figure 8-5. Diagram from the DISTSQL EXPLAIN option

Explaining and Tracing SQL | 275

Distributed SQL diagrams can be a little difficult to interpret, but the very complexity
of the diagram in Figure 8-5 should give us pause. We can see that there are five
“TableReader” nodes involved in resolving this query. Because the movr schema is
geographically distributed (e.g., rides for specific cities are located on specific nodes),
why did we need to involve five nodes to retrieve rides to a single address? The
answer is that we specified the end_address column but not the city column. If we
generate a distributed SQL diagram for a query that includes the city column:

movr> EXPLAIN (DISTSQL) SELECT *
FROM rides
WHERE city='new york'
 AND end_address = '63002 Sheila Fall';

we see a much less complicated—and much less time-consuming—single-node oper‐
ation, as shown in Figure 8-6.

Figure 8-6. DISTSQL diagram for a single-node query

Note that the structure of these diagrams is specific to the distributed system they run
on. A DISTSQL diagram on a single-node cluster will usually be simpler than one run
on a widely distributed cluster.

EXPLAIN DEBUG
The DEBUG option of EXPLAIN ANALYZE creates a package of information that contains
just about everything you could possibly want when tuning a SQL statement:

movr> EXPLAIN ANALYZE (DEBUG)
SELECT *
 FROM rides r
JOIN vehicles v ON
 (r.vehicle_city=v.city and r.vehicle_id=v.id)
 WHERE vehicle_id='aaaaaaaa-aaaa-4800-8000-00000000000a'
AND vehicle_city='amsterdam'
AND end_address='63002 Sheila Fall'
ORDER BY start_address;

276 | Chapter 8: SQL Tuning

 info

 Statement diagnostics bundle generated. Download from the Admin UI (Advanced
 Debug -> Statement Diagnostics History), via the direct link below, or using
 the command line.
 Admin UI: https://guyharrison1-506-0:8080
 link: https://guyharrison1-506-0:8080/_admin/v1/stmtbundle/682491029549164305
 Command line: cockroach statement-diag list / download

The debug packet can be retrieved from the URL shown in the output of EXPLAIN
ANALYZE (DEBUG) or accessed using the cockroach statement-diag command:

$ cockroach statement-diag list --url $CRDB_CLUSTER

Statement diagnostics bundles:
 ID Collection time Statement
 682648827880505350 2021-08-08 04:51 EXPLAIN ANALYZE (DEBUG) SELECT v.id…
 667946704191422465 2021-06-17 06:32 INSERT INTO seq_cached(id, rnumber, …
.
$ cockroach statement-diag download 682648827880505350 myExplainDebug.zip \
 --url $CRDB_CLUSTER

$ unzip myExplainDebug.zip
Archive: myExplainDebug.zip
 inflating: statement.txt
 inflating: opt.txt
 inflating: opt-v.txt
 inflating: opt-vv.txt
 inflating: plan.txt
 inflating: distsql.html
 inflating: trace.json
 inflating: trace.txt
 inflating: trace-jaeger.json
 inflating: env.sql
 inflating: schema.sql
 inflating: stats-movr.public.vehicles.sql
 inflating: stats-movr.public.rides.sql

The ZIP file contains text representations of the plan, definitions for the schema
object, and a URL for the distributed SQL chart that we looked at earlier. It also
includes a Jaeger-compatible trace file. Jaeger is a popular framework for visualizing
and analyzing distributed trace information.

The Jaeger trace file shows exactly how much time was consumed on each node
within various parts of the CockroachDB code. Although this sounds great, in
practice you’re usually better off just looking at the EXPLAIN plan—sometimes less
information leads you more directly to a solution. However, in complex cases the
Jaeger trace might be just the thing.

Explaining and Tracing SQL | 277

Figure 8-7 shows an example of a Jaeger trace.

Figure 8-7. Jaeger trace from EXPLAIN ANALYZE DEBUG

Changing SQL Execution
You’ve determined that a SQL statement needs to go faster, and you’ve collected
EXPLAIN information to help understand the current execution profile. So, what now?

Improvements in SQL performance usually come down to one of the following
options:

Changing or adding indexes
Indexes exist mainly to improve performance, so not surprisingly, you can often
use an index to improve performance. Beware, however, of creating redundant or
excessive indexes.

SQL rewrites
It may be that you have expressed your SQL in such a way as to suppress a
desirable plan. Additionally, you can use hints to force specific execution paths.
We’ll discuss hints in the context of specific optimization scenarios soon.

278 | Chapter 8: SQL Tuning

Optimizing Table Lookups
Before we can join, sort, or otherwise manipulate table data, we have to first read
from at least one table. Optimizing table lookups is, therefore, a critical task.

In some SQL databases, indexes and tables are structured differently, and there’s a
decision to be made as to whether a table access should be index-based or table scan–
based. However, in CockroachDB the structure of tables and indexes is identical, so
the question is not so much “index or table?” as “which index?”

Index lookups
In CockroachDB, the best resolution for a table access is through an index that has
all of the WHERE clause predicates as part of the key and any additional SELECT list
columns within the STORING clause.

For instance, consider this query:

movr> EXPLAIN
SELECT start_time, end_time
FROM rides
WHERE city = 'amsterdam'
AND start_address = '67104 Farrell Inlet'
AND end_address = '57998 Harvey Burg Suite 87';
 info
--
 distribution: local
 vectorized: true

 • filter
 │ estimated row count: 0
 │ filter: (start_address = '67104 Farrell Inlet')
 AND (end_address = '57998 Harvey Burg Suite 87')
 │
 └── • scan
 estimated row count: 2,257,435 (11% of the table;
 stats collected 2 days ago)
 table: rides@rides_pkey
 spans: [/'amsterdam'—/'amsterdam']

 index recommendations: 1
 1. type: index creation
 SQL command: CREATE INDEX ON movr.public.rides (city, start_address,
 end_address) STORING (start_time, end_time);

This query starts with rides@rides_pkey, which represents the base table and pri‐
mary key index for rides. In some other databases, the primary key index is a
separate structure from the table itself; however, in CockroachDB the primary key
index is the base table.

Changing SQL Execution | 279

If we create an index on all the columns in the WHERE clause as per CockroachDB’s
recommendation (note the omission of the STORING clause for this example):

movr> CREATE INDEX rides_address_ix ON rides(city, start_address, end_address);

our execution plan now looks like this:

 • index join
 │ estimated row count: 0
 │ table: rides@rides_pkey
 │
 └── • scan
 estimated row count: 0 (<0.01% of the table; stats collected 2 days ago)
 table: rides@rides_address_ix
 spans: [/'amsterdam'/'67104 Farrell Inlet'/'57998 Harvey Burg Suite 87'
 —/'amsterdam'/'67104 Farrell Inlet'/'57998 Harvey Burg Suite 87']

We are using a new index, but now we have this strange index join step. We have no
JOIN condition in the query, so why do we have to do a JOIN?

Effectively, this index join step indicates that we are joining the results from the
index back into the base table to retrieve the columns that we want to display in the
SELECT list. In other words, it represents the navigation from the index entry to the
base table row.

An even better index would have been one that stored those columns so that we
did not have to perform this join. This time we’ll create a covering index as per
CockroachDB’s original recommendation:

movr> CREATE INDEX rides_address_times_ix
 ON rides(city, start_address, end_address)
STORING (start_time,end_time);

Now that our table access is optimized, we have just a single scan of the index:

 • scan
 estimated row count: 0 (<0.01% of the table; stats collected 9 minutes ago)
 table: rides@rides_address_times_ix
 spans: [/'amsterdam'/'67104 Farrell Inlet'/'57998 Harvey Burg Suite 87'—
 /'amsterdam'/'67104 Farrell Inlet'/'57998 Harvey Burg Suite 87']

You may remember from Chapter 5 that we can use a concatenated index to resolve
a query provided any of the leading columns are specified. For example, the index
we just created could be used to efficiently resolve queries like this one—where the
leading start_address column is included in the WHERE clause:

movr> EXPLAIN
SELECT start_time, end_time
FROM rides
WHERE city = 'amsterdam'
AND start_address = '67104 Farrell Inlet';

280 | Chapter 8: SQL Tuning

 info
--
 distribution: local
 vectorized: true

 • scan
 estimated row count: 0 (<0.01% of the table; stats collected 10 minutes ago)
 table: rides@rides_address_times_ix
 spans: [/'amsterdam'/'67104 Farrell Inlet'—
 /'amsterdam'/'67104 Farrell Inlet']

However, the index cannot be used to optimize queries like the following one, which
has the trailing end_address in the WHERE clause:

movr> EXPLAIN
SELECT start_time, end_time
FROM rides
WHERE city = 'amsterdam'
AND end_address = '57998 Harvey Burg Suite 87';
 info
--
 distribution: local
 vectorized: true

 • index join
 │ estimated row count: 1
 │ table: rides@rides_pkey
 │
 └── • filter
 │ estimated row count: 1
 │ filter: end_address = '57998 Harvey Burg Suite 87'
 │
 └── • scan
 estimated row count: 2,277,448
(11% of the table;
stats collected 10 minutes ago)
 table: rides@rides_address_ix
 spans: [/'amsterdam'—/'amsterdam']

Note that this query exhibits two clues that an indexing optimization might be
possible: the index join and filter steps.

The presence of index join or filter steps in an execution plan
may be an indication that a better indexing solution is possible.

Changing SQL Execution | 281

Index merges
When a query filters on multiple columns, each of which is indexed separately,
CockroachDB may perform an index merge—identified in the EXPLAIN output as a
zigzag join.

For instance, imagine there are two indexes on a table named iotData:

CREATE INDEX iotState_ix ON iotData(state_code);
CREATE INDEX iotType_ix ON iotData(obs_type);

If we issue a query using both of these columns, we’ll see the zigzag join step:

EXPLAIN SELECT avg(measurement)
 FROM iotData
 WHERE obs_type=10
 AND state_code=10;

 info

 distribution: full
 vectorized: true

 • group (scalar)
 │ estimated row count: 1
 │
 └── • lookup join
 │ table: iotdata@primary
 │ equality: (rowid) = (rowid)
 │ equality cols are key
 │
 └── • zigzag join
 estimated row count: 197
 pred: (obs_type = 10) AND (state_code = 10)
 left table: iotdata@iotstate_ix
 left columns: (state_code, rowid)
 left fixed values: 1 column
 right table: iotdata@iottype_ix
 right columns: (obs_type)
 right fixed values: 1 column

The zigzag join starts reading from one of the two indexes, then for each row
matching the condition does a quick lookup on the second index for rows with a
matching primary key and filter condition. Depending on the distribution of data, the
zigzag merge of two indexes can be more efficient than using just one of the indexes
and almost certainly more efficient than a scan of the base table.

Figure 8-8 shows the performance of various approaches to the query shown. The
zigzag merge outperformed either of the individual indexes and was far better
than a full scan. However, as always, a composite index—(state_code,obs_type)

STORING(measurement)—provided the ultimate in performance.

282 | Chapter 8: SQL Tuning

Figure 8-8. Comparison of zigzag index merge with other approaches

Query distribution

EXPLAIN ANALYZE output includes a nodes attribute for each step, which identifies the
nodes that needed to be involved in the execution step, and a distribution attribute,
which identifies queries that could be resolved by a single node (the gateway node) as
compared to those that needed to be forwarded to other nodes in the cluster.

Bear in mind that even if the distribution is “local,” the node concerned can fetch
data from other nodes. However, all the SQL processing of that data (sorting, joining,
filtering) will occur on the gateway node.

There’s no right or wrong number of nodes that need to be involved in a query. When
aggregating larger amounts of data, the use of multiple nodes helps to parallelize the
processing and avoid network transmission of data—because each node can partially
aggregate the data. On the other hand, for single-row lookups, we might expect and
hope that a single node can resolve the query, and we would be concerned if we see
multiple nodes participating.

For instance, consider this query:

movr> EXPLAIN ANALYZE
SELECT id
 FROM rides r
 WHERE start_address='81147 Samantha Manors';

Changing SQL Execution | 283

 info

planning time: 263µs
execution time: 13.1s
distribution: full
vectorized: true
rows read from KV: 20,012,724 (3.3 GiB)
cumulative time spent in KV: 25.4s
maximum memory usage: 450 KiB
network usage: 184 B (13 messages)
regions: gcp-australia-southeast1

• filter
│ nodes: n2, n3, n4, n5, n6, n8, n9
│ regions: gcp-australia-southeast1
│ actual row count: 1
│ estimated row count: 0
│ filter: start_address = '81147 Samantha Manors'
│
└── • scan
 nodes: n2, n3, n4, n5, n6, n8, n9
 regions: gcp-australia-southeast1
 actual row count: 20,012,724
 KV rows read: 20,012,724
 KV bytes read: 3.3 GiB
 estimated row count: 20,012,724 (100% of the table;
 stats collected 2 days ago)
 table: rides@rides_pkey
 spans: FULL SCAN

The full scan required the query to be distributed to seven nodes. Not surprising,
since we are, of course, scanning the entire table, and its data is distributed across
those nodes. An index on the filter column results in a “local” query distribution
involving just a single node:

movr> CREATE INDEX rides_start_add_ix ON rides(start_address);
CREATE INDEX

Time: 84.540s

movr> EXPLAIN ANALYZE
SELECT id
 FROM rides r
 WHERE start_address='81147 Samantha Manors';
 info

 planning time: 703µs
 execution time: 10ms
 distribution: local
 vectorized: true
 cumulative time spent in KV: 9ms
 maximum memory usage: 10 KiB

284 | Chapter 8: SQL Tuning

 network usage: 0 B (0 messages)
 regions: gcp-australia-southeast1

 • scan
 nodes: n2
 regions: gcp-australia-southeast1
 actual row count: 0
 KV rows read: 0
 KV bytes read: 0 B
 estimated row count: 0 (<0.01% of the table; stats collected 18 minutes ago)
 table: rides@rides_start_add_ix
 spans: [/'81147 Samantha Manors'—/'81147 Samantha Manors']
(18 rows)

In general, when you’re looking for a single row, you would hope to see a single node
involved in the lookup.

Index hints
If we want to force a particular index access path for a table access, we can do
so by specifying the index name in the FROM clause. For instance, if we specify
rides@rides_pkey, then we’ll use the base table (or primary key index, if you like).
An EXPLAIN with the OPT option will show that we have a “force-index” operation:

movr> EXPLAIN (OPT)
SELECT start_time, end_time
FROM rides@rides_pkey
WHERE city = 'amsterdam'
AND end_address = '57998 Harvey Burg Suite 87';
 info
 project
 └── select
 ├── scan rides
 │ ├── constraint: /2/1: [/’amsterdam’—/’amsterdam’]
 │ └── flags: force-index=primary
 └── filters
 └── end_address = '57998 Harvey Burg Suite 87'

Likewise, we can force the use of a specific index:

movr> EXPLAIN (OPT)
SELECT start_time, end_time
FROM rides@rides_address_ix
WHERE city = ‘amsterdam’
AND end_address = ‘57998 Harvey Burg Suite 87’;
 info
 project
 └── index-join rides
 └── select
 ├── scan rides@rides_address_ix
 │ ├── constraint: /2/6/7/1: [/’amsterdam’—/’amsterdam’]
 │ └── flags: force-index=rides_address_ix

Changing SQL Execution | 285

 └── filters
 └── end_address = ‘57998 Harvey Burg Suite 87’

Specifying a specific index in the FROM clause can improve perfor‐
mance if the optimizer is not choosing the best index. However,
this practice has a host of pitfalls and should be used sparingly:

• If the index specified is dropped, your SQL may fail.•
• If a better index is created in the future, the optimizer will be•

prevented from taking advantage of the new index.
• Changes in table data distributions might suggest a better plan•

in the future, which the index hint will prevent.

Use index hints as a last resort or to evaluate the performance of
various indexes in test environments.

Full scans
The most notorious undesirable query step is the full scan of a large table. When
performing analytic workloads, these full scans are commonplace. However, in trans‐
actional contexts they usually indicate a missing index or badly formed query.

Here’s an example:

movr> EXPLAIN
SELECT start_time, end_time
FROM rides
WHERE end_address = '57998 Harvey Burg Suite 87';
 info
--
 distribution: full
 vectorized: true

 • filter
 │ estimated row count: 0
 │ filter: end_address = '57998 Harvey Burg Suite 87'
 │
 └── • scan
 estimated row count: 20,012,724 (100% of the table;
stats collected 58 minutes ago)
 table: rides@rides_pkey
 spans: FULL SCAN

The spans: FULL SCAN entry against the scan step tells us that every row in the table
or index was read. This is often a bad thing—it may indicate that you need a new
index to support the query or that you have failed to include a leading column of an
existing index in your WHERE clause. In the previous case, it’s the latter error: the city
column should have been included with the end_address column.

286 | Chapter 8: SQL Tuning

CockroachDB’s cost-based optimizer may determine that a FULL SCAN will be faster
than a secondary index scan with an index join. This behavior can be disabled with
the following setting:

ALTER ROLE ALL SET disallow_full_table_scans = true;

With this setting applied, CockroachDB’s cost-based optimizer will not prioritize
full table scans for tables with more than the number of rows defined by the
large_full_scan_rows variable. This variable determines what CockroachDB con‐
siders to be a table that’s too large for a FULL SCAN, and it can be updated as follows:

-- Increase the value from its default of 1,000.
SET large_full_scan_rows = 5000;

-- Disable full table scans altogether.
SET large_full_scan_rows = 0;

A FULL SCAN span in a scan step may indicate a missing index or a
failure to include the leading columns of an existing index.

Full scans can also occur on indexes and are sometimes hard to spot. For instance,
suppose we have an index to support username lookups by address:

CREATE INDEX user_address_ix ON users(address) STORING (name);

This works well when we supply the entire address:

EXPLAIN SELECT name FROM users WHERE address='20069 Tara Cove';

 info

 distribution: local
 vectorized: true

 • scan
 estimated row count: 0 (<0.01% of the table; stats collected 43 seconds ago)
 table: users@user_address_ix
 spans: [/'20069 Tara Cove'—/'20069 Tara Cove']

However, if we don’t know the street number and provide a wildcard, we see that we
access a lot more rows. Indeed, while the infamous FULL SCAN span is not shown, the
span of NULL— is effectively the same thing; we had to scan the entire index to find
matching rows:

EXPLAIN SELECT name FROM users WHERE address LIKE '% Tara Cove';

 info

 distribution: local

Changing SQL Execution | 287

1 CockroachDB does support a case-insensitive comparison operator—ILIKE. However, the use of ILIKE still
results in a full index scan.

 vectorized: true

 • filter
 │ estimated row count: 269,875
 │ filter: address LIKE '% Tara Cove'
 │
 └── • scan
 estimated row count: 809,626 (100% of the table;
stats collected 43 seconds ago)
 table: users@user_address_ix
 spans: (/NULL—]

We can also inadvertently cause a full scan by applying operations to query predi‐
cates. For instance, if we’re not sure how addresses are capitalized in the database, we
might be tempted to do something like this:

movr> EXPLAIN SELECT name FROM users
 WHERE LOWER(address)=LOWER('20069 Tara Cove');
 info

 distribution: full
 vectorized: true

 • filter
 │ estimated row count: 33,333
 │ filter: lower(address) = '20069 tara cove'
 │
 └── • scan
 estimated row count: 100,000 (100% of the table;
 table: users@users_pkey
 spans: FULL SCAN

As you can see, by changing the case of the column in the WHERE clause, we have
prevented CockroachDB from matching those values with index entries, and a FULL
SCAN has resulted.1 An expression index (see Chapter 5) can be created to support
WHERE clauses like this.

Computed columns to the rescue
The solution to a lot of these problems is to create indexed computed columns on
the expressions concerned. In the following example, we create a computed column
for the address with the street number removed and then create an index on that
column:

movr>
movr> ALTER TABLE users ADD address_no_number STRING
 AS (SUBSTR(address,POSITION(' ' IN address)+1))

288 | Chapter 8: SQL Tuning

 VIRTUAL;
ALTER TABLE

movr>
CREATE INDEX users_add_no_num_ix ON users(address_no_number)
 STORING (name);
CREATE INDEX

We can now use that index to effectively search for addresses without the street
number:

movr>
EXPLAIN SELECT name FROM users
WHERE address_no_number = 'Tara Cove';
 info

 distribution: local
 vectorized: true

 • scan
 estimated row count: 2 (0.18% of the table; stats collected 13 seconds ago)
 table: users@users_add_no_num_ix
 spans: [/'Tara Cove'—/'Tara Cove']

A similar technique can be used to perform case-insensitive searches. We’d create
a computed column on the uppercased address column and index that computed
column.

Indexed computed columns can often be used to provide indexed
access methods when operations on SQL columns (substrings or
case-insensitive searches, for instance) would otherwise suppress
an index.

Optimizing Joins
Joins can multiply the overhead of SQL queries. Every join involves additional stor‐
age engine operations, and in the case of badly executed joins, the overhead can be
extreme.

Furthermore, the complexity of join optimization grows exponentially as more joins
are added to the SQL. In extreme cases, the number of possible plans will exceed
the factorial of the number of tables involved. For instance, for a 5-table join with
no filter conditions, the number of possible orders may be as high as 5 (120!). Since
CockroachDB supports multiple join methods for each of these orders, the number of
possible plans may be in the hundreds.

The session parameter reorder_joins_limit limits the number of join reorderings
that the optimizer will consider. By default, the optimizer will reorder only subtrees

Changing SQL Execution | 289

2 For this example, we created an index on users(name), which is not in the standard movr schema.

containing four or fewer joins by default. For a join with a high elapsed time,
increasing this value might allow the optimizer to find a better option.

Join Methods
Most CockroachDB SQL joins will use one of the following algorithms:

Lookup join
CockroachDB performs a search of the second (or “inner”) table for each row
found in the first (or “outer”) table. This type of join is most effective when the
inner table is fully indexed on the join condition, because otherwise each search
would require a full or partial range scan. The index join, which we’ve seen earlier
in this chapter, is a special case of the lookup join.

Hash join
CockroachDB creates a hash table (in memory, if possible; on disk, if necessary)
from the smaller of the two tables, then uses that hash table as a sort of on-the-fly
index to look up rows matching the join conditions from the larger table. Hash
joins provide scalable performance when joining all or most of the table’s rows or
where there is no supporting index for the join.

Merge join
Both tables must have equivalent indexes on the join conditions. Merge joins
are used in similar circumstances to hash joins but will normally outperform the
hash join because there’s no need to create an in-memory hash table.

Inverted join
This algorithm is less commonly used. It occurs when there is a join condition
that leverages values in JSONB or ARRAYs and which can be joined only by the use
of an inverted index on those values (see Chapter 5 for a discussion of inverted
indexes).

Let’s look at some examples.

Lookup joins
For most transactional workloads, you’ll be hoping for lookup joins that can leverage
indexes and which do not need to scan large numbers of rows.

In this example, we get ride identifiers for a specific rider by name:2

movr> EXPLAIN
 SELECT r.id FROM rides r
 JOIN users u ON (u.city=r.city AND u.id=rider_id)
 WHERE u.city='amsterdam'

290 | Chapter 8: SQL Tuning

 AND u.name='Thomas Smith';

 info

 distribution: full
 vectorized: true

 • lookup join
 │ estimated row count: 1
 │ table: rides@rides_auto_index_fk_city_ref_users
 │ equality: (city, id) = (city,rider_id)
 │ pred: city = 'amsterdam'
 │
 └── • scan
 estimated row count: 0 (<0.01% of the table;)
 table: users@user_names_idx
 spans: [/'Thomas Smith'/'amsterdam'—/'Thomas Smith'/'amsterdam']

For each row retrieved from the users@user_names_idx index we perform a lookup
on the rides@rides_auto_index_fk_city_ref_users index (this is the foreign key
constraint index linking users and RIDERS).

As we saw in the section on table accesses, you’ll often see “joins” between an index
and its base table. So, for example, if we projected the user’s address and the ride date
in the WHERE clause, we’d see joins from the indexes to the base table to retrieve those
columns:

movr> EXPLAIN
 SELECT r.start_time ,u.address FROM rides r
 JOIN users u ON (u.city=r.city AND u.id=rider_id)
 WHERE u.city='amsterdam'
 AND u.name='Thomas Smith';
 info

 distribution: full
 vectorized: true

 • lookup join
 │ table: rides@rides_pkey
 │ equality: (city, id) = (city,id)
 │ equality cols are key
 │
 └── • lookup join
 │ estimated row count: 0
 │ table: rides@rides_auto_index_fk_city_ref_users
 │ equality: (city, id) = (city,rider_id)
 │ pred: city = 'amsterdam'
 │
 └── • index join
 │ estimated row count: 0
 │ table: users@users_pkey
 │

Changing SQL Execution | 291

 └── • scan
 estimated row count: 0 (<0.01% of the table;
 stats collected 6 minutes ago)
 table: users@user_names_idx
 spans: [/'Thomas Smith'/'amsterdam'—/'Thomas Smith'/'amsterdam']

This two-table, three-joins plan might seem a little confusing to those more
familiar with other databases. Remember: in CockroachDB an index and a table
are more or less equivalent structures. What we see here is a join from the
users@user_names_idx to the users@users_pkey table, then a join from there to
the rides@rides_auto_index_fk_city_ref_users foreign key index and then to the
rides@rides_pkey table. In databases such as Oracle, the index to table “joins” would
be described as index lookups.

We might think of this execution plan in pseudocode as follows:

FOR each row found in users@user_names_idx with matching value:
FIND matching row in users@users_pkey
FOR each row found in rides@fk index with matching rider_id

FIND matching row in rides@rides_pkey
ADD joined row to result set.

There’s nothing to be alarmed about when seeing the index joins and additional
lookup joins. However, consider this join situation:

movr>
EXPLAIN
 SELECT r.start_time ,u.address FROM rides r
 JOIN users u ON (u.city=r.city AND u.address=r.end_address)
 WHERE u.city='amsterdam'
 AND u.name='Thomas Smith';
 info

 distribution: full
 vectorized: true

 • lookup join
 │ estimated row count: 1
 │ table: rides@rides_pkey
 │ equality: (city) = (city)
 │ pred: (address = end_address) AND (city = 'amsterdam')
 │
 └── • index join
 │ estimated row count: 0
 │ table: users@users_pkey
 │
 └── • scan
 estimated row count: 0 (<0.01% of the table;
 stats collected 13 minutes ago)
 table: users@user_names_idx
 spans: [/'Thomas Smith'/'amsterdam'—/'Thomas Smith'/'amsterdam']

292 | Chapter 8: SQL Tuning

This join has a similar “shape” to the previous example but is less efficient. Note that
in the top-most lookup join, the equality condition includes only the city and that
the address comparison is shown in the pred: (predicate) section. What this means is
that not all of the join could be satisfied using the index.

Sure enough, if we do an EXPLAIN ANALYZE, we see that more than two million rows
(all rides in amsterdam) needed to be processed in that final step:

EXPLAIN ANALYZE
 SELECT r.start_time ,u.address FROM rides r
 JOIN users u ON (u.city=r.city AND u.address=r.end_address)
 WHERE u.city='amsterdam'
 AND u.name='Thomas Smith';

 info
--
 planning time: 3ms
 execution time: 12.8s
 distribution: full
 vectorized: true
 rows read from KV: 2,223,731 (379 MiB)
 cumulative time spent in KV: 5.3s
 maximum memory usage: 1.8 MiB
 network usage: 0 B (2 messages)
 regions: gcp-australia-southeast1

 • lookup join
 │ nodes: n8
 │ regions: gcp-australia-southeast1
 │ actual row count: 0
 │ KV rows read: 2,223,715
 │ KV bytes read: 379 MiB
 │ estimated row count: 1
 │ table: rides@rides_pkey
 │ equality: (city) = (city)
 │ pred: (address = end_address) AND (city = 'amsterdam')
 │
 └── • index join
 │ nodes: n8
 │ regions: gcp-australia-southeast1
 │ actual row count: 8
 │ KV rows read: 8
 │ KV bytes read: 911 B
 │ estimated row count: 0
 │ table: users@users_pkey
 │
 └── • scan
 nodes: n8
 regions: gcp-australia-southeast1
 actual row count: 8

Changing SQL Execution | 293

 KV rows read: 8
 KV bytes read: 628 B
 estimated row count: 0 (<0.01% of the table;
 stats collected 18 minutes ago)
 table: users@user_names_idx
 spans: [/'Thomas Smith'/'amsterdam'—/'Thomas Smith'/'amsterdam']

If the equality condition in a join plan does not include all the
columns in the join condition, then it may indicate that the join is
only partially supported by an index.

Hash and merge joins
When no index exists to support a join, then a hash join will be performed, as in the
following example:

movr> EXPLAIN
SELECT COUNT(*)
 FROM rides r
 INNER JOIN vehicles v ON (v.id=r.vehicle_id)
;
 info
--
 distribution: full
 vectorized: true

 • group (scalar)
 │ estimated row count: 1
 │
 └── • hash join
 │ estimated row count: 18,576,034
 │ equality: (vehicle_id) = (id)
 │
 ├── • scan
 │ estimated row count: 20,012,724 (100% of the table;
 stats collected 6 hours ago)
 │ table: rides@rides_auto_index_fk_vehicle_city_ref_vehicles
 │ spans: FULL SCAN
 │
 └── • scan
 estimated row count: 20,429 (100% of the table;
 stats collected 3 days ago)
 table: vehicles@vehicles_auto_index_fk_city_ref_users
 spans: FULL SCAN

294 | Chapter 8: SQL Tuning

3 Note that we’ve forced the merge join algorithm here using the MERGE JOIN directive.

A hash join is often the best solution for a join in which all or most of two tables must
be joined. However, if an index is available, we might also see a merge join:3

movr> EXPLAIN
SELECT COUNT(*)
 FROM rides r
 INNER MERGE JOIN vehicles v ON (v.id=r.vehicle_id);
 info
--
distribution: full
vectorized: true

• group (scalar)
│ estimated row count: 1
│
└── • merge join
 │ estimated row count: 2,064,004
 │ equality: (vehicle_city, vehicle_id) = (city, id)
 │ right cols are key
 │
 ├── • scan
 │ estimated row count: 20,012,724 (100% of the table;
 stats collected 6 hours ago)
 │ table: rides@rides_auto_index_fk_vehicle_city_ref_vehicles
 │ spans: FULL SCAN
 │
 └── • scan
 estimated row count: 20,429 (100% of the table;
 stats collected 3 days ago)
 table: vehicles@primary
 spans: FULL SCAN

If there is an appropriate index, we also have the option of forcing a lookup join. In
this case (because there is a supporting index), the optimizer prefers the lookup join:

 • group (scalar)
 │ estimated row count: 1
 │
 └── • lookup join
 │ estimated row count: 2,064,004
 │ table: vehicles@primary
 │ equality: (vehicle_city, vehicle_id) = (city,id)
 │ equality cols are key
 │
 └── • scan
 estimated row count: 20,012,724 (100% of the table;
 stats collected 6 hours ago)
 table: rides@rides_auto_index_fk_vehicle_city_ref_vehicles
 spans: FULL SCAN

Changing SQL Execution | 295

Join performance is notoriously sensitive to data distributions. However, for what it’s
worth, Figure 8-9 compares the performance of hash, merge, and lookup joins when
joining the vehicles and rides tables. You’ll note that the optimizer’s decision to
use a lookup join was arguably not the best decision in this case—a hash join may
have been faster. The optimizer’s decisions are based on heuristics, algorithms, and
estimates of cardinalities and should not be regarded as infallible.

Figure 8-9. Comparison of hash, merge, and lookup joins when joining rides and vehicles

Join hints
We can specify the join algorithm we prefer in the SQL statement itself. These
“join hints” are useful when we believe the optimizer has chosen a suboptimal plan.
However, they have the same drawbacks we discussed earlier in the context of index
hints. By forcing the optimizer’s hand, we prevent it from adapting to changes in
indexing or data distribution in the future. Here are examples of a join forcing each of
the three methods:

SELECT COUNT(*)
 FROM rides r
 INNER MERGE JOIN vehicles v
 ON (r.vehicle_city=v.city AND v.id=r.vehicle_id);

SELECT COUNT(*)
 FROM rides r
 INNER LOOKUP JOIN vehicles v

296 | Chapter 8: SQL Tuning

 ON (r.vehicle_city=v.city AND v.id=r.vehicle_id);

SELECT COUNT(*)
 FROM rides r
 INNER HASH JOIN vehicles v
 ON (r.vehicle_city=v.city AND v.id=r.vehicle_id);

When you specify a join method, you are also forcing a particular join order. In the
previous examples, we are forcing CockroachDB to start with the rides table and
join that to vehicles. So, when using join hints, be sure that the sequence of join
operations is the one you want.

Outer joins and anti-joins
So far, we’ve looked at the inner join types. Let’s briefly look at outer joins and
anti-joins.

Outer joins are executed using the same algorithms as inner joins. However, outer
joins limit the possible join orders because inner tables have to be accessed before the
outer tables. The lookup join algorithm cannot, therefore, be used with right outer
joins (because you can’t start a lookup from a value that doesn’t exist on the “right”
table).

An anti-join is one that returns rows that do not match rows in another table. There
are a few ways to express this in SQL. One way is to perform a NOT IN subquery:

movr> EXPLAIN
 SELECT r.id FROM rides r
 WHERE (city,rider_id) NOT IN
 (SELECT city,user_id FROM user_promo_codes upc);
 info

 distribution: full
 vectorized: true

 • cross join (anti)
 │ estimated row count: 13,341,816
 │ pred: (column20 = (city, rider_id)) IS NOT false
 │
 ├── • scan
 │ estimated row count: 20,012,724 (100% of the table;
 stats collected 6 hours ago)
 │ table: rides@rides_auto_index_fk_city_ref_users
 │ spans: FULL SCAN
 │
 └── • render
 │ estimated row count: 3,179
 │
 └── • scan
 estimated row count: 3,179 (100% of the table;
 stats collected 6 hours ago)

Changing SQL Execution | 297

 table: user_promo_codes@primary
 spans: FULL SCAN

Another option is NOT EXISTS:

movr> EXPLAIN
 SELECT r.id FROM rides r
 WHERE NOT EXISTS (
 SELECT city,user_id
 FROM user_promo_codes upc
 WHERE upc.city=r.city
 AND upc.user_id=r.rider_id);

 info
--
 distribution: full
 vectorized: true

 • merge join (anti)
 │ estimated row count: 19,957,371
 │ equality: (city, rider_id) = (city, user_id)
 │
 ├── • scan
 │ estimated row count: 20,012,724 (100% of the table;
 stats collected 6 hours ago)
 │ table: rides@rides_auto_index_fk_city_ref_users
 │ spans: FULL SCAN
 │
 └── • scan
 estimated row count: 3,179 (100% of the table;
 stats collected 6 hours ago)
 table: user_promo_codes@primary
 spans: FULL SCAN

Finally, we can perform an OUTER JOIN and filter on the NULL values returned on rows
that don’t have a match:

movr> EXPLAIN
SELECT r.id
 FROM rides r
 LEFT OUTER JOIN user_promo_codes upc
 ON (upc.city=r.city
 AND upc.user_id=r.rider_id)
 WHERE upc.user_id IS NULL;
 info

 distribution: full
 vectorized: true

 • filter
 │ estimated row count: 20,003,984
 │ filter: user_id IS NULL

298 | Chapter 8: SQL Tuning

 │
 └── • merge join (left outer)
 │ estimated row count: 20,012,724
 │ equality: (city, rider_id) = (city, user_id)
 │
 ├── • scan
 │ estimated row count: 20,012,724 (100% of the table;
 stats collected 6 hours ago)
 │ table: rides@rides_auto_index_fk_city_ref_users
 │ spans: FULL SCAN
 │
 └── • scan
 estimated row count: 3,179 (100% of the table;
 stats collected 6 hours ago)
 table: user_promo_codes@primary
 spans: FULL SCAN

Each of these three formulations returns the same data but with significantly different
execution plans. The “best” execution plan will often depend on the nature of the
data and, in particular, the size of the two tables. In our example, user_promo_codes
is a small fraction of the size of rides. However, the cross join (anti) plan used
to implement the NOT IN syntax can lead to particularly poor results. Figure 8-10
illustrates the results for the preceding test queries.

Figure 8-10. NOT IN anti-joins can perform particularly poorly

Changing SQL Execution | 299

Summary of Join Guidelines
Joins are one of the most expensive SQL operations. For the transactional workloads
typically encountered by CockroachDB, the following guidelines are suggested:

• Enable lookup joins for queries that join small numbers of rows by ensuring that•
indexes exist on all columns included in the join conditions.

• Try to eliminate as many rows as possible before joining—make sure that any•
nonjoin WHERE clause conditions are also supported by efficient indexes.

• Use join hints only as a last resort, and always test alternative hints carefully.•
Remember that join hints force a specific order as well as a specific method.

• Consider alternatives to joins—the denormalizations described in Chapter 5 are•
often intended to avoid join overhead.

Optimizing Sorting and Aggregation
Transactional workloads typical in CockroachDB do not generally involve the large-
scale aggregations that are typical of a data warehousing database. Nevertheless, there
are almost always some reporting or analytic requests that will aggregate nontrivial
data sets, and it’s important that these SQL statements don’t swamp the database
unnecessarily.

It’s also commonplace for a transactional query to retrieve “latest” or “next” rows in
some ordered data set, which can require sorting of data. For instance, we might want
to select the most recent rides commenced in a particular city:

movr> EXPLAIN
SELECT start_address
FROM rides
WHERE city = 'paris'
ORDER BY start_time DESC
LIMIT 10;
 info

 distribution: full
 vectorized: true

 • limit
 │ estimated row count: 10
 │ count: 10
 │
 └── • sort
 │ estimated row count: 2,279,450

300 | Chapter 8: SQL Tuning

 │ order: -start_time
 │
 └── • scan
 estimated row count: 2,279,450 (11% of the table;
 stats collected 7 hours ago)
 table: rides@rides_pkey
 spans: [/'paris'—/'paris']

Here you can see we scan rides for Paris entries, then sort that result—about two
million rows must be sorted.

As usual, the best solution is to create an index. Indexes can be used not just to filter
rows but also to return rows in a specific order. If we create an index:

movr> CREATE INDEX rides_start_time_address ON
rides(city, start_time) STORING (start_address);

we can retrieve rows in the specified order with far lower overhead:

movr> EXPLAIN
SELECT start_address
FROM rides
WHERE city = 'paris'
ORDER BY start_time DESC
LIMIT 10;
 info

 distribution: local
 vectorized: true

 • revscan
 estimated row count: 10 (<0.01% of the table;
 stats collected 2 minutes ago)
 table: rides@rides_start_time_address
 spans: [/'paris'—/'paris']
 limit: 10

GROUP BY and aggregation queries tend to deal with larger sets of rows, but the use of
an index to reduce overhead is still significant. Consider this query, which sums up
revenue by city and vehicle:

movr> EXPLAIN analyze
SELECT vehicle_city, vehicle_id, sum(revenue)
FROM rides
GROUP BY vehicle_city, vehicle_id
ORDER BY 3 DESC
LIMIT 10
 -> ;

Changing SQL Execution | 301

 info
--
 planning time: 850µs
 execution time: 29.7s
 distribution: full
 vectorized: true
 rows read from KV: 20,012,724 (3.3 GiB)
 cumulative time spent in KV: 43s
 maximum memory usage: 30 MiB
 network usage: 1.4 MiB (212 messages)
 regions: gcp-australia-southeast1

 • limit
 │ nodes: n9
 │ regions: gcp-australia-southeast1
 │ actual row count: 10
 │ estimated row count: 10
 │ count: 10
 │
 └── • sort
 │ nodes: n2, n5, n6, n8, n9
 │ regions: gcp-australia-southeast1
 │ actual row count: 50
 │ estimated row count: 21,937
 │ order: -sum
 │
 └── • group
 │ nodes: n2, n5, n6, n8, n9
 │ regions: gcp-australia-southeast1
 │ actual row count: 21,972
 │ estimated row count: 21,937
 │ group by: vehicle_city, vehicle_id
 │
 └── • scan
 nodes: n2, n5, n6, n8, n9
 regions: gcp-australia-southeast1
 actual row count: 20,012,724
 KV rows read: 20,012,724
 KV bytes read: 3.3 GiB
 estimated row count: 20,012,724 (100% of the table;
 stats collected 1 day ago)
 table: rides@rides_pkey
 spans: FULL SCAN

The full scan of the base table is followed by a GROUP and SORT operation. If an index
exists on all of the columns involved, the overhead of grouping is reduced because
rows can be consumed in sorted order—Figure 8-11 illustrates the performance
improvement.

302 | Chapter 8: SQL Tuning

Figure 8-11. Creating a dedicated index can reduce GROUP BY overhead

Disk Sorts
When a sort operation exceeds the threshold defined by sql.distsql.temp_stor
age.workmem, CockroachDB will write to temporary disk files during the sort opera‐
tion. By default, the limit is 64 MB:

show cluster setting sql.distsql.temp_storage.workmem;

 sql.distsql.temp_storage.workmem

 64 MiB

Sixty-four megabytes is not a huge amount of memory, and while you might not
want every session concurrently consuming 64 MB (although we’ve heard worse
ideas), you definitely should consider increasing the value if large sorts appear to be
executing slowly.

For example, consider this horrible query that sorts all the rows in the rides table
after joining to several other tables:

movr> EXPLAIN ANALYZE
SELECT *
 FROM rides r
 INNER HASH JOIN users u
 ON (r.city=u.city AND r.rider_id=u.id)
 INNER HASH JOIN vehicles v
 ON (v.city=r.vehicle_city AND v.id=r.vehicle_id)
 LEFT OUTER HASH JOIN user_promo_codes upc

Changing SQL Execution | 303

 ON (upc.city=u.city AND upc.user_id=u.id)
 LEFT OUTER HASH JOIN promo_codes pc
 ON (upc.code=pc.code)
 ORDER BY r.city,v.TYPE,u.address,pc.description LIMIT 10;
 info

 planning time: 49ms
 execution time: 7m29s
 distribution: full
 vectorized: true
 rows read from KV: 20,854,691 (3.4 GiB)
 cumulative time spent in KV: 1m23s
 maximum memory usage: 204 MiB
 network usage: 38 GiB (8,715,885 messages)
 regions: gcp-australia-southeast1

<snip>

If we increase the value of sql.distsql.temp_storage.workmem, we can reduce its
execution time by about 40% (Figure 8-12):

movr> SET cluster setting sql.distsql.temp_storage.workmem='500 MiB';
SET CLUSTER SETTING

Time: 49ms

movr> EXPLAIN ANALYZE
SELECT *
 FROM rides r
 INNER HASH JOIN users u
 ON (r.city=u.city AND r.rider_id=u.id)
 INNER HASH JOIN vehicles v
 ON (v.city=r.vehicle_city AND v.id=r.vehicle_id)
 LEFT OUTER HASH JOIN user_promo_codes upc
 ON (upc.city=u.city AND upc.user_id=u.id)
 LEFT OUTER HASH JOIN promo_codes pc
 ON (upc.code=pc.code)
 ORDER BY r.city,v.TYPE,u.address,pc.description LIMIT 10;
 info
--
 planning time: 2ms
 execution time: 4m38s
 distribution: full
 vectorized: true
 rows read from KV: 20,854,691 (3.4 GiB)
 cumulative time spent in KV: 1m24s
 maximum memory usage: 822 MiB
 network usage: 33 GiB (5,982,233 messages)
 regions: gcp-australia-southeast1

304 | Chapter 8: SQL Tuning

Figure 8-12. Increasing memory available to sorts can reduce execution time

Disk sorts can result from a variety of SQL operations, including ORDER BY, GROUP BY,
window functions, hash joins, and merge joins. There are also per-node limits to the
amount of memory available for sorting; these will be discussed in Chapter 14.

Optimizing DML
DML statements—INSERT, UPDATE, UPSERT, and DELETE—are the bread and butter of
a transactional system. However, we generally concentrate on tuning queries because
even in an intensive online transaction processing (OLTP) system, queries outnum‐
ber DML and many of the principles involved in DML optimization involve WHERE
clause optimization.

Most DML statements include a query component—to identify the rows to be pro‐
cessed or to gather the new rows to be inserted. Optimizing this query aspect—tuning
the WHERE clause in an UPDATE or DELETE statement, for instance—is usually the first
step in DML tuning.

Indexes exist mainly to optimize query performance, but this benefit comes at a
high cost for DML statements. Index maintenance is often the single biggest com‐
ponent of DML performance. Therefore, make sure that all indexes are needed.
The crdb_internal.index_usage_statistics (https://cockroa.ch/3DGCMat) table
contains statistics about the utilization of indexes and can be consulted to find
“unused” indexes. Referential integrity constraints create an overhead on DML as
well.

Changing SQL Execution | 305

https://cockroa.ch/3DGCMat

When optimizing a WHERE clause with an index, try to avoid creating an index that
itself must be changed during the update. For instance, consider this UPDATE:

movr> EXPLAIN ANALYZE
UPDATE users u
 SET credit_card='9999804075'
 WHERE city='rome'
 AND name='Anna Massey'
 AND address='75977 Donna Gateway Suite 52';

Without a new index, this UPDATE is going to have to perform a fairly expensive
SCAN of all Rome users and filter on name and address. Based on our repeated
recommendations of adding all the columns referenced in a query within the INDEX,
you might create a covering index like this:

movr> CREATE INDEX users_city_name_add_cc_idx
 ON users(city,name,address)
 STORING(credit_card);

Alas, the STORING clause in this index actually hurts performance. Because the
credit_card number is changing, the index will have to be updated as well as the
base table. The correct index to optimize the update would be:

movr> CREATE INDEX users_city_name_add_idx
 ON users(city,name,address);

So while STORING columns that appear in the SELECT list is often a good practice,
STORING columns in the SET list can be counterproductive.

As with a lot of indexing decisions, you need to balance the cost/benefit of various
indexes. While the STORING clause shown is detrimental to the performance of the
UPDATE, it might be beneficial to a SELECT statement. The important thing to remem‐
ber is that the STORING clause should not necessarily be added to an index without
a clear idea of its positive effect on SELECT statements versus its possible detrimental
effect on UPDATEs.

Denormalizations that have been introduced to reduce SELECT overhead—to avoid
joins, in particular—will often exact a cost during update operations. Make sure you
are not maintaining pointless or ineffective denormalizations. We discussed denorm‐
alization in Chapter 5.

Inserts can be optimized by using bulk inserts—inserting multiple rows in a single
operation. Methods of doing this were covered in Chapter 6.

The total elapsed time for a multistatement DML can be strongly affected by the
transaction design. Check out Chapter 6 for a discussion on optimizing transactions.

306 | Chapter 8: SQL Tuning

Optimizing the Optimizer
SQL is a declarative language—it specifies a logical operation on data without defin‐
ing exactly how that operation should be executed. The declarative nature of SQL
makes it relatively easy to understand and is one of the major reasons that SQL has
become so ubiquitous. Like all SQL database systems, CockroachDB includes a query
optimizer that will determine how to transform the SQL logical request into physical
database operations. We introduced the SQL optimizer in Chapter 2. The decisions
that the optimizer makes can be influenced favorably by cluster configuration and
table statistics.

In practice, you don’t need to think too much about optimizer internals when tuning
CockroachDB SQL. In the majority of cases, the optimizer will make a decision that is
as good as can be achieved given the available indexes and constraints of the SQL.

However, the optimizer is dependent on statistics that give it an idea of the distribu‐
tion of data within various tables and indexes. You do have some control over these
statistics, and in some cases you might want to tweak these.

Optimizer Statistics
The optimizer is only as good as its input statistics, so it’s important to ensure that
those statistics are up-to-date and comprehensive. CockroachDB collects statistics
automatically, and most of the time these automatic statistics will be sufficient.
However, you do have the option to tweak statistics collections or to collect them
manually.

Viewing Statistics
The SHOW STATISTICS command allows us to look at the statistics collected for a
specific table:

movr> SHOW STATISTICS FOR table rides;

statistics_name| column_names | created | row_count | distinct_co | null_c|
---------------+-----------------+------------+-----------+-------------+-------+
 __auto__ | {city} | 2021-08-03 | 20000000 | 9 | 0 |
 __auto__ | {id} | 2021-08-03 | 20000000 | 31265268 | 0 |
 __auto__ | {city,id} | 2021-08-03 | 20000000 | 47560228 | 0 |
 __auto__ | {rider_id} | 2021-08-03 | 20000000 | 834396 | 0 |
 __auto__ | {city,rider_id} | 2021-08-03 | 20000000 | 825716 | 0 |
 __auto__ | {vehicle_city} | 2021-08-03 | 20000000 | 9 | 0 |
 __auto__ | {vehicle_id} | 2021-08-03 | 20000000 | 20074 | 0 |
 __auto__ | {vehicle_city,v | 2021-08-03 | 20000000 | 20033 | 0 |
 __auto__ | {start_address} | 2021-08-03 | 20000000 | 48346139 | 0 |

Optimizing the Optimizer | 307

By default, all collected statistics are displayed, including those from previous collec‐
tion jobs. To see just the most recent statistics, you could issue a query like this:

movr> WITH rides_statistics AS (
 SELECT *
 FROM [SHOW STATISTICS FOR TABLE rides])
SELECT column_names,row_count,distinct_count,null_count
 FROM rides_statistics r
 WHERE created =(
 SELECT max(created)
 FROM rides_statistics
 WHERE column_names=r.column_names
);
 column_names | row_count | distinct_count | null_count
------------------------------+-----------+----------------+-------------
 {city} | 20000566 | 9 | 0
 {id} | 20000566 | 20121839 | 0
 {city,id} | 20000566 | 19805157 | 0
 {rider_id} | 20000566 | 805159 | 0
 {city,rider_id} | 20000566 | 797137 | 0
 {revenue} | 20000566 | 100 | 0
 {vehicle_id} | 20000566 | 20136 | 0
 {vehicle_city,vehicle_id} | 20000566 | 20108 | 0
 {start_address} | 20000566 | 20001958 | 0
 {end_address} | 20000566 | 19982168 | 461
 {start_time} | 20000566 | 596 | 0
 {end_time} | 20000566 | 862 | 461
 {vehicle_city} | 20000566 | 9 | 0
 {start_address,end_address} | 20000566 | 20385247 | 0
(14 rows)

Time: 36ms

Automatic Statistics
Statistics are collected when:

• Tables are created•
• Schema changes occur•
• Time passes•
• Changes to the table exceed a threshold•

SQL statistics are controlled by the cluster settings shown in Table 8-1. You can
modify these using the SET CLUSTER SETTING command.

Normally, we would not recommend changing these parameters, though if automatic
statistics correction was causing an unacceptable overhead, you might increase the
fraction_stale_rows parameter if you’re comfortable that the general shape of your
data was not changing.

308 | Chapter 8: SQL Tuning

Table 8-1. Cluster configuration settings for automatic statistics collection

Cluster setting Description

sql.stats.automatic_collection.enabled Automatic statistics collection mode

sql.stats.automatic_collection
.fraction_stale_rows

Target fraction of stale rows per table that will
trigger a statistics refresh

sql.stats.automatic_collection.min_stale_rows Target minimum number of stale rows per
table that will trigger a statistics refresh

sql.stats.histogram_collection.enabled Histogram collection mode

sql.stats.multi_column_collection.enabled Multicolumn statistics collection mode

Manually Collecting Statistics
You can create or refresh statistics for an entire table by issuing a CREATE STATISTICS
command:

movr> CREATE STATISTICS manualStats FROM rides;

CREATE STATISTICS

Time: 51.450s

You can also create statistics for a nominated set of columns. For instance, here we
create statistics for start_address and end_address:

movr> CREATE STATISTICS city_addresses ON city, end_address
 FROM movr.public.rides;

CREATE STATISTICS

Time: 10.235s

This gives the optimizer an idea of the cardinality for that combination of columns.
We might do this when two columns are related in some way that the optimizer
doesn’t know about. In this case, we know intuitively that each address resides within
a single city. Unless we collect the statistics, the optimizer will assume that they are
independent and consequently overestimate the number of distinct values.

Background jobs are created to collect statistics. You can view the status of these jobs
through the SHOW JOBS command.

There are a relatively limited number of situations in which changing statistics would
be warranted. The automatic statistics collection triggers (on average) when 20% of a
table has changed. In some cases, this is insufficient when a specific column is subject
to frequent changes. For example, if you have a timestamp column where the values
are increasing over time, the histogram will show no recent values most of the time,
which can make the optimizer choose an index on that column even when it’s a bad
idea. Another example would be a “status” column that showed whether some task

Optimizing the Optimizer | 309

was complete or in progress. Depending on when the statistics were collected, the
histogram might show no in-progress tasks.

Summary
SQL tuning is a big topic—whole books have been written on it, so in this chapter
we’ve necessarily only been able to provide an introduction.

The CockroachDB query optimizer will attempt to determine the best possible plan
for a SQL statement given the table statistics that it has at hand and the available
access paths. You can help the optimizer by making sure that statistics are up-to-date
and relevant, but more importantly, by ensuring that the best set of indexes exist to
support the queries that will be executed.

Finding queries that may need tuning can be done through the database console
Statements page or through the SHOW STATEMENTS statement. The EXPLAIN command
can be used to reveal how a SQL statement will be executed. No serious SQL tuning
effort will omit the use of the EXPLAIN command, particularly EXPLAIN ANALYZE,
which shows actual statement execution times.

Single table accesses are the building block of more complex SQL statements, so make
sure these are optimized by using appropriate indexes and avoiding accidental full
scans. You can force the use of indexes with index “hints,” though the use of hints
should be the exception, not the rule; hints may prevent the optimizer from evolving
superior plans in the future.

Joins are generally also optimized by making sure that indexes exist on join condi‐
tions, though for joins on complete tables, hash or merge joins that do not use
indexes might be appropriate. Join hints can be used to control the types and order of
joins, though again, these should not be used frequently.

When data is needed in a specific order, an index retrieval is usually preferred to
a sort operation. If a sort operation is required, consider changing the amount of
memory available to the sort to avoid disk sorts.

DML optimization uses the principles of query optimization—particularly where the
DML has a WHERE clause. Avoiding excessive indexing and effective transaction design
are also important.

In the next chapter, we’ll explore the considerations you’ll need to make when plan‐
ning a production CockroachDB cluster.

310 | Chapter 8: SQL Tuning

PART III

Deploying and Administering
CockroachDB

CHAPTER 9

Planning a Deployment

In the preceding chapters, we’ve described how to get started with CockroachDB and
how to develop highly available and performant applications with the CockroachDB
platform. Now it’s time to consider how to set up a production CockroachDB cluster
to support your application.

The distributed nature of CockroachDB allows for a large range of deployment topol‐
ogies. Choosing the right topology requires an understanding of your application’s
requirements and the cost and performance implications of various CockroachDB
options. In this chapter, we review the steps in planning a deployment and provide an
overview of the most common deployment patterns.

There are two main categories of CockroachDB deployments:

Fully managed CockroachDB Cloud deployment
All aspects of CockroachDB cluster management are handled by the
CockroachDB Cloud platform. Within CockroachDB Cloud, you can choose
between Basic and Standard, which are multitenant products, and Advanced,
which is a dedicated hardware product.

Self-hosted or “do-it-yourself ” deployment
You install CockroachDB on your own hardware platform or on cloud-based
virtual machines (VMs) that you have available.

In either of these scenarios, you may deploy single-region or multiregion topologies.

Within a self-hosted deployment, you have two additional dimensions of
choice. Whether using on-premises hardware or cloud resources, you can install
CockroachDB directly onto the OS, or you can install CockroachDB into a Kuber‐
netes cluster.

313

Know Your Requirements
Choosing the best deployment pattern for your circumstances is hard unless you have
a clear handle on your business requirements. Here are some of the considerations
you should clarify before finalizing your deployment plan:

Total cost of ownership
The total cost of ownership for a CockroachDB deployment includes the capi‐
tal costs of hardware (for on-premises deployments) or hardware rental (for
cloud deployments) together with the software licensing costs and staffing costs
for administrators. A fully managed cloud deployment, such as CockroachDB
Cloud, minimizes the staffing costs and encapsulates all other costs into a single
subscription. An on-premises deployment might have higher staffing costs and
higher initial hardware costs but lower software subscription costs.

High availability
CockroachDB is a high-availability system, but failures can occur, and outages
can result. In a three-node cluster, a failure of two nodes may render the cluster
unavailable. If this scenario is unacceptable, then a more sophisticated topology
might be required. A topology can be designed that can tolerate a data center
failure or even the failure of a cloud vendor. However, these topologies have cost
and performance implications.

Latency
The time taken to respond to a single request is often a key service-level agree‐
ment (SLA) for a business application. Some topologies are more resilient in the
case of regional disruptions but at the cost of write latency.

Geographical considerations
Applications that require global availability can take advantage of CockroachDB’s
rich multiregion capabilities. Within these capabilities, there are trade-offs
involving survivability, latency, and total costs that need to be understood.

Comparison of Deployment Options
Table 9-1 provides a quick summary of deployment options together with some
advantages and disadvantages.

314 | Chapter 9: Planning a Deployment

Table 9-1. Comparison of deployment options

Deployment type Advantages Disadvantages
CockroachDB Cloud
Basic

Minimal operational costs.
Pay only for the resources that you use (after
free allowance).
No need for predeployment capacity
planning.
Automatic and seamless scaling with
demand.

Your deployment is cotenanted with other Basic users.
This may result in less predictable performance when
compared to a dedicated deployment.
May conflict with some security policies regarding
colocation of data with other tenants.
Billing may be unpredictable if monthly budgets are set
too high, or performance may be throttled if monthly
budgets are set too low.

CockroachDB Cloud
Standard

Predictable pricing and performance.
Rapid scaling.
Private cloud connectivity.

No advanced security features like CMEKs and PCI/
HIPAA compliance.
May conflict with some security policies regarding
colocation of data with other tenants.

CockroachDB Cloud
Advanced

Reduced operational costs.
Rapid deployment.
Rapid scaling and reconfiguration.
Private cloud connectivity.
Advanced security features like CMEKs and
PCI/HIPAA compliance.

Reduced control over hardware and software
configuration. Unlike Basic and Standard, you still have
to determine the number and sizes of nodes.

Self-hosted on bare
metal

Maximum control over hardware and OS
configuration.
Lower ongoing hardware “rental” costs,
compared to a cloud deployment.
Reduced latency for applications running on-
premises.

The highest cost in terms of skilled human resources.
High initial cost in terms of hardware acquisition.
Paying for computing resources that are unused during
idle periods.

Self-hosted on
cloud VMs

Ability to reconfigure computing resources
dynamically.
Reduced capital hardware expenditure.
Availability of additional services such as
Amazon S3 for backup storage.

Increased operational expenditure (hardware “rental”).

Self-hosted with
Kubernetes (bare
metal or cloud
VMs)

Reduced complexity of deployment and
management.
Ability to share hardware resources with
other applications.
Ability to migrate to cloud-based Kubernetes
platforms.

Reduced control over fine-grained configuration.
Requires high-level Kubernetes expertise and
infrastructure.
Multiregion deployments are more complex to
configure, but the CockroachDB documentation (https://
cockroa.ch/3TFlpjM) provides examples.

As emphasized earlier, the deployment that is best for you depends strongly on
your requirements, and there is not (yet) a “one-size-fits-all” deployment option
that will suit every enterprise. However, it’s worth noting that there’s a strong and
increasing pull in the database industry toward fully managed deployments (such
as CockroachDB Cloud) and toward containerized development platforms such as
Kubernetes.

Comparison of Deployment Options | 315

https://cockroa.ch/3TFlpjM

1 In the 2021 StackOverflow survey, only 19.5% of professional developers reported that they were using
Kubernetes.

About Kubernetes
Kubernetes is one of the fastest-growing and most significant technologies in the
distributed systems realm. However, it’s still relatively young, and there’s still a large
cohort of software professionals who have not yet used Kubernetes.1

Kubernetes controls—orchestrates—the components of a distributed application.
These components are independently distributed as pods, which are themselves
typically composed of one or more Docker containers. The CockroachDB Kuber‐
netes Operator is a Kubernetes pod that understands how to create and maintain
a CockroachDB deployment of arbitrary size. Once you’ve created a CockroachDB
cluster on Kubernetes, you can move it to any environment where Kubernetes is
supported, which includes all the major cloud platforms as well as on-premises
Kubernetes clusters.

Kubernetes is incredibly powerful and has been described by some as the “Linux of
the cloud.” However, it does involve a learning curve. O’Reilly has books (such as
Production Kubernetes by Josh Rosso et al.) and learning paths (such as this CKAD
Prep Course) that can help.

Kubernetes excels at running stateless application servers. A stateful service like a
CockroachDB cluster is much more complicated. If this is the first time you’re using
Kubernetes, consider starting with a stateless service to gain an understanding of the
basics before moving on to run CockroachDB on Kubernetes.

Fully managed database as a service (DBaaS) solutions such as CockroachDB Cloud
offer significant compelling advantages when compared to self-managed deploy‐
ments. In particular:

• Fully managed deployments reduce the human costs involved in managing a•
database cluster. A globally distributed database cluster might require a team of
highly skilled administrators, possibly located across multiple time zones. In a
DBaaS solution, most of these staff are not required.

• Operational risks are reduced. The team managing the DBaaS has a greater depth•
of experience with the technology and is generally less likely to misconfigure the
cluster. The DBaaS can incorporate more redundancy in human and computing
resources than might be practical in a self-hosted deployment. Therefore, the risk
of failure for most organizations is reduced.

316 | Chapter 9: Planning a Deployment

https://www.oreilly.com/library/view/production-kubernetes/9781492092292
https://www.oreilly.com/library/view/certified-kubernetes-application/9781492083726
https://www.oreilly.com/library/view/certified-kubernetes-application/9781492083726

• The time to implement is radically reduced. A DBaaS cluster can be configured•
in minutes—an equivalent self-hosted cluster might take months of planning and
implementation.

• A fully managed DBaaS can be scaled in either direction with ease. In a self-•
hosted configuration, adding or removing nodes can be a laborious process.
Although adding nodes to a CockroachDB cluster is relatively straightforward,
the provisioning of hardware in an on-premises environment is not something
that can typically be done quickly. Even on a cloud platform, you still have many
manual tasks to perform before a new node can be instantiated.

For organizations where a fully managed DBaaS is, for some reason, not acceptable, a
containerized deployment using Kubernetes is often the next most attractive option.
A Kubernetes deployment has the following advantages:

• If using a Kubernetes Operator provided by the database vendor, then best•
practices are baked into the configuration.

• Assuming a Kubernetes environment already exists, the time to deploy is signifi‐•
cantly reduced.

• A Kubernetes-based deployment can be scaled in either direction with less effort•
than on a bare-metal configuration.

The advantages of Kubernetes are widely accepted. Indeed, CockroachDB Cloud itself
is deployed on Kubernetes infrastructure. However, Kubernetes is a sophisticated
platform and requires experienced administrators to establish and maintain it. If no
Kubernetes resources exist in your organization and CockroachDB Cloud is for some
reason not suitable, you may decide that a self-hosted implementation is required.

However, given the complexity involved in a large CockroachDB cluster deployment,
you might still give some thought to a Kubernetes deployment. Perhaps now is the
time to invest in Kubernetes training and expertise and to deploy your CockroachDB
on your first Kubernetes cluster. The advantages in terms of portability and scalability
in the future may well justify the investment at this time.

CockroachDB Cloud Basic Deployments
The most fundamental question for a fully managed solution is between an Advanced
deployment and a Basic or Standard deployment.

In an Advanced deployment, you choose the number and size of the CockroachDB
nodes. These nodes are dedicated to your cluster and are under your control.

In a Basic or Standard deployment, you don’t have to worry about any of that. You
simply sign up to CockroachDB Cloud Basic in a specific region or regions and
provide a limit on the amount of monthly spending you’re willing to commit to.

CockroachDB Cloud Basic Deployments | 317

2 All resource usage in CockroachDB Basic is measured in Request Units. RUs represent the compute and I/O
resources used by a simple query.

Resources will be applied to your service as your workload requires, and you’ll only
ever be charged for the resources that you use.

There’s a lot to like in a Basic deployment:

• You are paying only for the resources that you use, so if your application has•
peaks and troughs of activity, you will probably save money.

• Resources applied to your workload will scale dynamically—as the workload•
demands increase or decrease, CPU and memory will be adjusted to suit. As a
result, you may not need to perform benchmarks or otherwise determine ahead
of time the hardware resources needed to support the application workload.

• You have a monthly “free” allowance of Request Units (RUs),2 so you can develop•
for free and then seamlessly transition to a paid service when your application
moves into production.

These advantages are compelling across a wide range of use cases. However, there are
some limitations:

• In a Basic deployment, your application shares some physical resources with•
other Basic users. In particular, an individual storage node will contain data from
multiple CockroachDB Basic users. Of course, you can’t see data from other
users, but some organizations with hyper-sensitive security requirements might
find this cotenanting unacceptable.

• This cotenanting also allows for the possibility that a “noisy neighbor” might dis‐•
rupt your performance. Because some hardware resources are shared, it’s possible
that very high load on another tenant causes a noticeable drop in throughput
on your service. Furthermore, during periods of low activity, your data in cache
memory may be replaced by data from other tenants. When your application
starts to ramp back up, it will experience a “cold cache” scenario in which
physical I/O rates are higher than normal and, consequently, query latencies are
increased.

• With the Standard tier, your costs are fixed. With the Advanced tier, both your•
cost and resource utilization are fixed, so there’ll be no surprises in billing or
in performance. With the Basic tier, you “cap” your bill at a certain amount; if
your resource utilization exceeds that cap, then you’ll be throttled back to the
performance limitations provided by the free tier. There are, of course, ways
to monitor and manage your resource utilization. Nevertheless, if you’re not
paying attention to your application’s workload, you might be surprised by an
unusually large bill or by the throttling of resources. When the throttling occurs,

318 | Chapter 9: Planning a Deployment

the resources available to the Basic cluster will be abruptly reduced, leading to
increases in latency and reduced throughput.

To plan a Basic deployment, you need to establish an upper limit on your monthly
spending, a cloud provider, and the region(s) that your Basic deployment will work
within.

CockroachDB Cloud Standard Deployments
For customers who need price and performance guarantees and don’t require dedica‐
ted hardware, there’s the Standard tier. The Standard tier meets customers somewhere
between the other two managed service offerings and is suitable for most production
workloads.

As with the Basic tier, Standard is a multitenant solution, so customers with stringent
requirements on data isolation may prefer the Advanced tier, which provides dedica‐
ted hardware and thus isolation for both compute and data storage.

At this tier, private connectivity to customer clouds (via AWS PrivateLink (https://
cockroa.ch/3Psqf1g) and GCP Private Service Connect (https://cockroa.ch/3DMAFX2))
becomes possible, allowing customers to securely connect their CockroachDB clus‐
ters to their internal cloud infrastructure.

To plan a Standard deployment, you need to determine the maximum number of RUs
per second you expect your cluster to receive. The smallest size for a Standard cluster
is 2 vCPUs and the largest size is 60 vCPUs. To avoid performance issues during
busy periods, we recommend provisioning at least 40% above your expected peak
workload. If your cluster is approaching its provisioned limit, you’ll be notified.

Single-Region Advanced Deployments
If your deployment requires dedicated hardware, then you’ll be looking at an
Advanced tier deployment. We’ll start with planning an Advanced single-region
deployment, which in many respects represents the building blocks for a more com‐
plex multiregion deployment. We’ll discuss more complex deployments later in this
chapter and in subsequent chapters.

Common Planning Tasks—Advanced Deployments
Regardless of whether you are planning a CockroachDB Advanced deployment or a
self-hosted deployment, you should determine how many nodes will be required to
satisfy your throughput and availability requirements.

Single-Region Advanced Deployments | 319

https://cockroa.ch/3Psqf1g
https://cockroa.ch/3DMAFX2

3 For example, ALTER RANGE default CONFIGURE ZONE USING num_replicas = 5.

While more nodes can provide more throughput, from a price-performance perspec‐
tive, it’s often more effective to “scale up” (purchase or configure more powerful
servers or VMs) than to “scale out” (by adding more nodes to the cluster).

Availability, however, cannot be increased by scaling up. The number of nodes that
can fail is determined by the number of nodes in the cluster. Remember from
Chapter 2 that each replica range must maintain a majority of its ranges to survive
a failure. So a three-node cluster can survive just one node failure, while a suitably
configured five-node cluster (one with a replication factor of five) can survive two
node failures.

Configuring an even number of nodes is unhelpful for availability because, in a
network partition, neither side of the partition might have a majority. For instance, if
a four-node cluster is split in half by a network issue, neither side will have a majority,
so processing cannot continue because neither side can be sure that the other is not
processing conflicting operations. Likewise, a four-node cluster with a replication
factor of three can survive only a single node failure since a two-node failure fails to
leave a majority of replicas running.

Replication factor plays an important role in a cluster’s resilience to failure. It deter‐
mines the number of replicas that can be lost before data becomes unavailable. When
scaling out a cluster by adding more nodes, CockroachDB will automatically redis‐
tribute existing ranges across the additional nodes to ensure equal node utilization.
However, it won’t automatically increase the number of replicas. Hence, if you’re
scaling a cluster from three to five nodes to increase resilience, make sure to also
increase the number of replicas with the ALTER RANGE command.3

Replication factor and node count are independent, and replication
factor doesn’t have to match the node count. This is especially true
for larger clusters. For example, a 15-node cluster is unlikely to
require a replication factor of 15. We’ll discuss the detailed implica‐
tions of replication factors in Chapter 11.

Benchmarking and Capacity Planning
Before an application is deployed to production, it’s somewhere between almost
impossible and absolutely impossible to accurately predict the computing resources
required to sustain a given business workload. So how can we successfully configure
the correct number and sizes of nodes to support our database?

320 | Chapter 9: Planning a Deployment

Broadly speaking, there are three approaches:

• We can perform a benchmark in which we simulate the expected workload as•
accurately as possible.

• We can extrapolate from another running production application that has a•
similar workload.

• We can try to model the workload and mathematically predict resource•
requirements.

None of these approaches is particularly easy or practical. Benchmarking requires
some means of simulating a realistic workload. For a geographically distributed, high-
throughput application, the complexity of the simulation can approach the complex‐
ity of the production deployment itself. Nevertheless, there are many benchmarking
tools that we can use to capture test workloads and scale the workload to simulate a
larger workload. Regardless, if you intend to run a preproduction benchmark, then
be sure to budget for the time, staff, and equipment (virtual or real) required to
perform it.

Extrapolating from another application is a superficially attractive proposition. “So
and so has a similar application, and they use eight m2.extra.fabulous EC2 instances.”
However, it’s a risky proposition—a similar workload in terms of users and queries
per second may translate to very different I/O, CPU, and memory requirements
depending on the data volumes, data model, and technologies employed. However,
you might be able to get close to a reasonable first-order approximation of hard‐
ware requirements, especially if you’re comparing with another application using
CockroachDB. Cockroach Labs’ Professional Services team—with their experience of
many customer deployments—can help here.

Modeling the workload and mathematically predicting the resource requirements is
a viable means of creating a low-precision estimation of at least certain aspects of
resource requirements. For instance, if you have EXPLAIN ANALYZE output for the
SQL statements that make up key transactions and those have been performed on
representative data volumes, you will have a sense of the I/O operations required to
support those operations. Given those individual I/O rates, you can extrapolate to
aggregate “logical” I/O requirements. The number of physical I/Os will be reduced
somewhat by caching at the storage layer—typically by 80% to 90%. This sort of
“back-of-an-envelope” I/O estimation may give you a first-cut sense of how many
nodes might be required given the aggregate I/O rate. Similar rough estimates might
provide some idea of CPU requirements—working out how many simple queries per
second a single CPU can sustain and extrapolating that to a higher workload.

Each of these approaches has as much art as science; typically, the guesses of expe‐
rienced practitioners are at least as accurate. You should always be prepared for
your estimates to be inaccurate and either overconfigure your hardware to avoid

Single-Region Advanced Deployments | 321

any chance of a performance bottleneck or be prepared to quickly increase your
deployment by adding nodes or increasing the size of your virtual nodes.

The difficulty in predicting exactly what hardware resources will be required to
support CockroachDB (or, indeed, any database) provides a strong argument for
cloud-based, orchestrated deployments. So, the less able you are to accurately predict
your current or future workload, the more motivation you have to deploy on an
elastically scalable cloud platform.

Regardless of the approach you use, you’re going to have to make a call on sizing the
four main attributes of the deployment:

CPU
CPU is required for virtually all operations, and is often the limiting factor
for a CockroachDB deployment. Every connection, SQL execution, and internal
operation consumes CPU resources and CockroachDB.

Memory
Memory is consumed by every connection and for SQL internal workspaces.
Furthermore, memory is used to cache frequently held data to reduce disk I/O.

I/O bandwidth
Physical disk operations are slower than most other operations and can become a
limiting factor. You should ensure that your disks support enough I/O operations
per second (IOPS) that they do not become a limiting factor. Be aware that some
disks allow for bursting, but this comes at a cost in terms of possible throttling in
the long term.

Disk storage
Obviously, your disks need to support enough storage to store your data. Data
storage can be higher than a back-of-an-envelope calculation might suggest:
the replication factor will multiply your storage needs, and indexes (especially
covering indexes) may consume as much storage as the base tables.

CockroachDB Cloud Deployments
A CockroachDB Advanced deployment takes away a lot of the effort for a
CockroachDB deployment, but there are still some predeployment decisions to make.

First, you will want to choose a cloud provider and region. CockroachDB Cloud is
available within Google Cloud, AWS, and Azure across a variety of regions. Generally,
you will want to choose a cloud provider and region that is “close” to your application
workload. Specifically:

• If your application is already running on a public cloud, it makes sense to•
locate your cluster within that cloud and region. For instance, if you have

322 | Chapter 9: Planning a Deployment

a Node.js-based application running in AWS region us-east-1 (Northern Vir‐
ginia), then it makes sense to locate your CockroachDB Cloud cluster in that
region because the network delay between application and database will be mini‐
mized. Furthermore, you can use virtual private cloud (VPC) peering (https://
cockroa.ch/36OzMgz) to create more secure internal IP addresses and reduce
latency.

• If your application is running off-cloud or in some other cloud provider, then•
locate your CockroachDB Cloud cluster as geographically close to your workload
as possible. Geographical closeness does not always result in low network laten‐
cies, but large geographical distances are certain to create latency.

The considerations for choosing the number of nodes are the same as for any
hardware deployment. Scaling up can be somewhat more cost-effective from a per‐
formance point of view, but a larger number of nodes can provide more redundancy
and availability.

At the time of writing, the standard node configurations available in CockroachDB
Cloud are shown in Table 9-2.

Table 9-2. Default vCPU and memory node configurations in CockroachDB Cloud

Virtual CPUs Memorya

2 8

4 16

8 32

16 64

32 128
a The amount of memory per node is not advertised or guaranteed
by CockroachDB, but these numbers were accurate at the time of
writing.

Your storage per node requirements will influence the number of IOPS your cluster
can perform. Table 9-3 provides a breakdown of node storage and how it relates to
IOPS. Custom node storage sizes can also be configured.

Table 9-3. Node storage versus IOPS configurations in CockroachDB Cloud

Storage (GiB) IOPS
15 255

35 525

75 1125

150 2250

300 4500

Single-Region Advanced Deployments | 323

https://cockroa.ch/36OzMgz

You can approach CockroachDB support if you would like to deploy a nonstandard
node size. You might want to do this if you have determined that your CPU/I/O ratios
are particularly unique; for instance, if you need a higher amount of storage but don’t
want to buy more CPU to go with it.

Self-Hosted on a Cloud Platform
In this scenario, we are deploying CockroachDB ourselves to VM images running
in a cloud platform such as Amazon EC2, GCP Compute Engine, or Azure Virtual
Machines. Our decision-making process is rather similar to a CockroachDB Cloud
Advanced deployment. The unique consideration is the configuration of the VM to
be deployed.

Each cloud platform offers a bewildering variety of instance types. You will typically
want to choose instance types with at least two virtual CPUs and with 4 GB of RAM
per virtual CPU.

On GCP, these would be the n2-standard, e2_standard, or n2-highcpu family of
VMs. On AWS, the m5 or c5 family of EC2 instances are suitable, and on Microsoft
Azure, the standard_F family of instances. Keep in mind that these are general
guidelines, not concrete recommendations. Each application will have different CPU
and memory requirements, so in some cases you might want to have a different
ratio of memory to CPU. It’s also true that we all have to live within our budgets, so
sometimes you have to make do with what you can afford.

The disk devices attached to these VMs will be an important factor on performance.
The guiding principle for optimizing I/O is to provision disks based on I/O rates,
not storage capacities. You should ensure that you have provisioned sufficient I/O
capacity for your nodes. In AWS use provisioned IOPS solid-state drive (SSD), in
Google Cloud Platform the SSD persistent disk (pd-ssd) type, and in Azure premium
SSD disks.

We recommend against using “ephemeral” disk devices, which do not survive beyond
the life of the VM. These disks are directly attached to the physical machine hosting
the VM, and while they can provide low-latency I/Os, they are not guaranteed to
survive VM reboots. These disks are referred to as ephemeral OS disks or Lsv2-series
disks on Azure, ephemeral or instance storage on AWS, and local SSD on Google
Cloud.

Table 9-4 compares the VM configurations for a “large” node (16 vCPU and 64 GB of
memory).

324 | Chapter 9: Planning a Deployment

Table 9-4. Comparison of “large” (16 vCPU, 64 GB) VM instances in each of the clouds

Cloud VM type Disk type
AWS EC2 m4.4xlarge Provisioned IOPS SSD (io2)

Azure D16s_v4 Premium SSD (P30 or better)

Google Cloud Platform n2-standard-16 SSD persistent disk (pd-ssd)

CockroachDB runs comfortably on most recent versions of Linux. The “standard”
Linux distributions provided by the cloud vendor are often preconfigured for opti‐
mized time synchronization, which can save configuration time later.

When deploying on cloud platforms, take advantage of the native load balancing
and time synchronization mechanisms provided by the cloud. Although it’s possible
to use external Network Time Protocol (NTP) and load balancers in the cloud, the
native cloud offerings are usually superior in terms of manageability, performance,
and reliability:

• On AWS (https://cockroa.ch/3r1059W), you will want to use AWS load balancing•
and the Amazon Time Sync Service.

• On GCP (https://cockroa.ch/36XvKCl), use Google TCP proxy load balancing and•
the Google internal NTP service.

• On Azure (https://cockroa.ch/3j4g02V), we recommend that you disable the•
Hyper-V Time Synchronization Service in favor of standard NTP and use Azure
load balancing.

Chapter 10 contains detailed instructions for configuring time synchronization.

Self-Hosted “Bare-Metal” On-Premises
The considerations for a self-hosted, on-premises deployment are the same as
for other dedicated self-hosted options (see “Common Planning Tasks—Advanced
Deployments” on page 319), but there are some specific considerations that you need
to take into account.

Primarily, in every other scenario, you have the option of changing the CPU or
memory on demand, but with physical hardware, it’s much harder to change the
configuration on the fly and, consequently, it’s more important to correctly configure
the nodes initially.

You will also have fewer options for automatic scaling compared with a CockroachDB
Cloud deployment, and you will be responsible for your own backup and disaster
recovery scenarios.

Single-Region Advanced Deployments | 325

https://cockroa.ch/3r1059W
https://cockroa.ch/36XvKCl
https://cockroa.ch/3j4g02V

In a “bare-metal” configuration, you are installing CockroachDB software directly
onto the OS of a physical host. That physical host should be configured with suffi‐
cient CPU, memory, and I/O resources to sustain the projected workload.

Remember, in a self-hosted, bare-metal configuration, you are limited in your ability
to scale up: while it’s possible to reconfigure the memory or CPU of a node, it’s not
something that can be done with minimal risk or downtime. However, you are still
able to scale out by adding more nodes. Consequently, it’s a good idea to pick a node
configuration that provides a good balance between price and performance.

As we will see in later chapters, memory is an important resource for the storage
engine, avoiding unnecessary I/O and improving sort performance. For a production
implementation, 16 to 64 GB per node is typical. Up to 4 GB per CPU core is typical.

CPU typically constrains the amount of concurrent activity that can occur on each
node. At the time of writing, 8-core CPU processors offer the best price-performance
ratio, and at least two processors are typical. Systems that have very high concur‐
rency—a higher number of inbound connections, for instance—may benefit from
more CPU. Some SQL execution steps—hash joins and sorts, for example—may also
be CPU-hungry.

Each CockroachDB node has dedicated disk devices. These devices must satisfy both
the storage requirements (e.g., total terabytes [TB]) and the I/O requirements (e.g.,
IOPS at acceptable latencies). An easy mistake is to buy drives with a certain TB
of storage without considering the I/O capacity of the devices. While magnetic disk
devices (hard disk drive [HDD]) provide the best GB/dollar ratio, they provide the
worst IOPS/dollar ratio. To avoid a CockroachDB node becoming I/O-bound, you
will want to use SSDs.

Not all SSDs are created equally, however. SSDs may be connected over the tradi‐
tional Serial Advanced Technology Attachment (SATA) interface or through the
Peripheral Component Interconnect (PCI) (nonvolatile memory express [NVMe])
interface. The NVMe interface provides lower latency and higher performance,
though typically at a premium price point. The SSD drive itself may be a single-level
cell (SLC), multilevel cell (MLC), triple-level cell (TLC), or quad-level cell (QLC).
SLCs are the fastest and QLCs are relatively slower, so if money is no object, then
a PCI-based SLC drive would be preferred. However, there are price-performance
trade-offs involved in each configuration, and TLCs are quite common in production
scenarios.

The absolute I/O throughput of a node is dependent not just on the type of disk
but also on the number of disks. Multiple disks can either be striped (RAID 0) to
provide greater throughput, or the CockroachDB node can be launched with multiple
--store flags, allowing each disk to, in effect, act as a distinct replication group.
Configuring the node with stores—through multiple --store flags—provides more

326 | Chapter 9: Planning a Deployment

parallelism since each node becomes a separately managed Raft store. However, due
to the internals of replication, multiple --store flags are ineffective unless there are
more than three nodes in the cluster. For three-node clusters, you may want to use
RAID 0 to create a logical volume. Do not configure disks for a CockroachDB node
as RAID 5 or similar—the write penalty is unacceptably high for anything other than
a read-only workload.

It’s almost always a good idea to keep each node in the cluster equivalent in terms
of configuration and capacity. An unbalanced cluster tends to scale poorly, with the
slowest node in the cluster becoming a bottleneck.

Other Self-Hosted Considerations
In any self-hosted scenario, you will need to establish the following:

• Firewalls will need to be established to allow applications to connect to the•
CockroachDB cluster without allowing access to unwanted parties. We’ll discuss
firewall and network configuration in detail within Chapters 10 and 12.

• Clock synchronization in CockroachDB affects the stability and performance of•
the cluster. We’ll discuss this in Chapter 10.

• You will almost always want to configure a load balancer in front of your clus‐•
ter to distribute load and handle node failures. This will also be discussed in
Chapter 10.

Self-Hosted Kubernetes
An orchestrated deployment removes a lot of the overhead involved in the deploy‐
ment and management of distributed containerized applications and frameworks.
Kubernetes has emerged as the most influential orchestration framework, and in this
section we’ll discuss planning a Kubernetes deployment, whether on-premises or on a
cloud platform.

Kubernetes concepts and administration are beyond the scope of this book, so for
the purposes of this section, we’ll assume you are familiar with Kubernetes and
have a Kubernetes environment available. If you’re looking for a guide to deploying
Kubernetes in production, we’d suggest Production Kubernetes.

We talked earlier about the advantages of deploying CockroachDB on Kubernetes. In
particular, a Kubernetes deployment is inherently portable—the steps to install the
software are identical regardless of where the Kubernetes framework resides. Conse‐
quently, we don’t have to distinguish here between installing Kubernetes on-premises
and installation on one of the major cloud platforms. The core activities are identical.

Your Kubernetes cluster must be running a reasonably up-to-date version of Kuber‐
netes. For CockroachDB v24.2, the Kubernetes version must be at least 1.18. Newer

Single-Region Advanced Deployments | 327

https://learning.oreilly.com/library/view/production-kubernetes/9781492092292

versions of CockroachDB are likely to require newer versions of Kubernetes—consult
the CockroachDB documentation (https://cockroa.ch/3J7oReM) for guidance.

Each CockroachDB node will run within a Kubernetes pod, and these pods should be
sized similarly to those for on-premises or cloud deployments. As a rule of thumb,
each pod should have between 2 and 16 vCPUs and 4 GB of RAM per vCPU.

A Kubernetes node failure will at least temporarily result in the failure of a
CockroachDB node. To prevent that node failure from disabling the cluster, you
should align the Kubernetes nodes with CockroachDB nodes. For instance, if you
deploy a three-node CockroachDB cluster on a three-node Kubernetes cluster, then
it’s important that each CockroachDB node be located on a separate Kubernetes node.
Otherwise, a single Kubernetes node failure might disable the CockroachDB cluster.

In many serious production deployments, CockroachDB will run on dedicated
Kubernetes cluster nodes. However, in some cases a Kubernetes cluster will share
CockroachDB workloads with other applications. In these cases it’s important to
ensure that each CockroachDB node has sufficient access to CPU and memory
resources to avoid conflicts. Typically, this is done by using Resource requests
for each CockroachDB node that guarantee that a Kubernetes node does not
over-commit resources to competing applications. We’ll come back to this in the
next chapter, but from a planning point of view, you want to be sure that each
CockroachDB node can actually have exclusive access to the vCPU and memory
resources required. This requires some awareness of the resource requirements of the
other pods running within the cluster.

Historically, Kubernetes has been used for applications more than databases—CPU
and memory have been more influential than I/O. Consequently, many Kubernetes
clusters—particularly those on cloud platforms—are configured with economical
“storage by the GB” disks. For instance, when creating a Kubernetes cluster on GCP,
the default disk type for the node pool is standard persistent disk, whereas an SSD
persistent disk is a much better option for a database deployment.

When configuring Kubernetes nodes for CockroachDB, follow the guidelines for
on-premises hardware; in particular, you should use high-performance SSDs.

In many cases, the Kubernetes cluster will have multiple disk types available and
exposed as storageclasses. During CockroachDB initialization, you can select the
storage type most applicable to your workload. We’ll come back to this in Chap‐
ter 10. From a planning point of view, you need to be sure that high-performance
disk devices are available to the Kubernetes cluster on which you intend to deploy
CockroachDB.

328 | Chapter 9: Planning a Deployment

https://cockroa.ch/3J7oReM

Configuring for Self-Hosted High Availability
One of the reasons for using a distributed database system is that the database can
survive the sorts of failures that would cause a monolithic database to fail. The
original SQL databases might fail catastrophically if even a single disk device failed—
and the disks of those eras were far less resilient than those of today.

In a distributed database like CockroachDB, single points of failure like these are
completely survivable. We’ve outlined in previous chapters—particularly Chapter 2
—how CockroachDB topologies can be made fault-tolerant. In a production deploy‐
ment, it’s time to put these principles into practice.

Survivable failures fall into one of the following categories:

• A hardware failure that does not cause a node to fail; in particular, the failure of a•
disk device

• The failure of one or more nodes•
• A network failure•
• The failure of an availability zone (perhaps a data center failure)•
• Failure of a larger region•

Disk Failure
In a default configuration, the failure of a disk device will cause the CockroachDB
node to fail. However, it’s long been possible to configure disk devices in redundant
arrays that allow for individual disk failures. It’s possible in a self-hosted config‐
uration to configure RAID 10 (mirrored and striped) directly attached disks for
availability purposes. If this is done, then a disk failure will not necessarily cause a
node failure. However, it’s completely acceptable to use standalone disks and rely on
CockroachDB replication to handle disk failures. Note that the disks recommended
on cloud platforms are often replicated transparently.

Node Failures
The default configuration of CockroachDB provides for three replicas of each range.
This allows for only a single node failure. To tolerate more than one node failure, we
need to increase the replication factor.

The replication factor is controlled by CockroachDB replication zones. The
crdb_internal.zones table contains the definitions for these zones. The zone with
target RANGE default defines the default zone:

/movr> SELECT raw_config_sql FROM crdb_internal.zones
 WHERE target='RANGE default';

Configuring for Self-Hosted High Availability | 329

4 CockroachDB includes some system ranges with default replication set to five. If you are increasing the
general replication factor above five, you should increase the replication factor for these as well (https://
cockroa.ch/36S8CVW).

 raw_config_sql
--
 ALTER RANGE default CONFIGURE ZONE USING
 range_min_bytes = 134217728,
 range_max_bytes = 536870912,
 gc.ttlseconds = 90000,
 num_replicas = 3,
 constraints = '[]',
 lease_preferences = '[]'

To survive two node failures, we need a replication factor of at least five. We can
configure this as follows:

/movr> ALTER RANGE default CONFIGURE ZONE USING
 num_replicas=5;
CONFIGURE ZONE 1

Remember, only by increasing the number of replicas to an odd number do we
increase the number of node failures that can be tolerated. There must always be a
majority of replicas available to survive a node failure—so to survive two failures,
we need five replicas.4 In general, we don’t recommend setting the replication factor
above five—if you’re concerned about survivability beyond individual node failures,
you should consider availability zone configurations as discussed in Chapter 11.

Also, bear in mind that when we increase the replication factor, we increase the
write overhead for transactions. As always, in distributed systems there is a trade-off
between write throughput and availability. The higher the replication factor, the more
failures we can endure—but at the cost of slower transactional consensus.

In many CockroachDB deployments, multiregion configurations are used to protect
against larger-scale node failures. For this reason, if you’re considering a replication
factor above five, we think you might want to consider if a multiregion topology is
better for your specific circumstances.

Network Failure
A distributed database is highly vulnerable to network failures because all nodes need
to communicate with each other to continue. If the network as a whole fails, the
cluster cannot continue.

Luckily, complete network failures are unlikely. Simple network failures may cause
a node to become isolated and fail—in which case we rely upon the standard
CockroachDB replication to continue operations.

330 | Chapter 9: Planning a Deployment

https://cockroa.ch/36S8CVW

More severe network failures create more interesting scenarios. When a network
becomes partitioned such that the CockroachDB cluster is split in two, the side
of the partition with the smaller number of nodes is effectively unavailable. For a
three-node cluster, this will be the same as a single node failure. However, for larger
clusters, the network partition may result in a larger number of nodes becoming
disconnected. This is why we normally want to increase the replication factor as we
increase the size of the cluster.

In the case of a zone survival goal, data unavailability will occur if the number of
nodes that become partitioned is more than half of the zone replication factor.

Many of these concepts will be elaborated on in Chapter 12.

Zone and Region Topologies
Multiregion deployments allow a CockroachDB database to span multiple geographic
regions. In a multiregion deployment, each node is allocated to one region. A region
can consist of multiple zones. These concepts are roughly analogous to the regions
and zones that exist in cloud systems such as AWS or GCP.

Generally, a region is a collection of computing resources that are close enough
together that you can mostly ignore network latency between them. Regions are often
aligned with cities.

An availability zone is ideally a collection of resources that do not have any points
of failure in common with other availability zones. For the major cloud providers,
each availability zone consists of a separate building with separate connections to the
power grid and network with independent backup generators and so on.

Each database within the cluster can be assigned to one or more regions, with one of
the regions being the primary.

When planning for a multiregion deployment, it’s important to understand your
objectives. Broadly speaking, multiregional deployments can deliver one of two desir‐
able objectives:

• By distributing data close to its users, a multiregional deployment can reduce•
latency and improve performance for a widely distributed application. For
instance, you can ensure that Australian users can update their shopping basket
without having to send updates to a US data center and vice versa.

• By replicating data widely across multiple geographical regions, a multiregion•
deployment can allow a cluster to survive severe outages that would otherwise
be close to catastrophic. For instance, you could ensure that the database cluster
continues to function even if every data center in the eastern US region fails.

Configuring for Self-Hosted High Availability | 331

Of course, these two objectives are somewhat in conflict—in one case, we localize
data, and in the other case, we broadly distribute it. It’s usually possible to provide
good read performance to all regions, but writes are either going to be distributed
broadly (for high availability) or restricted to local regions (for low latency). Be
clear on which objective is more important to you before planning your deployment.
It’s also possible to pick different objectives for specific parts of the database—see
Chapter 11 for more details on configuring tables and databases for specific survival
goals.

The failure considerations for regional survival are an extension of zone survival
logic. Replicas are distributed across regions in such a way that the loss of any single
region still leaves a majority of voting replicas in place.

Although a cluster may be configured to survive the failure of a single region, it
may not be resilient to the failure of the same number of nodes in a single region
arbitrarily spread across regions in the cluster. For example, in a nine-node cluster
with three nodes in three regions each, the loss of a single region would result in the
loss of three nodes from the cluster. If we configure the replication factor of the data
in the cluster to maintain five copies, CockroachDB will spread the replicas across the
three regions with at most two copies in any single region. This way, the failure of a
single region will remove only two out of five replicas of data, which ensures that all
data would still be available. However, that doesn’t mean that any three nodes can fail.
If one node from each region failed, then some ranges at least would lose three of five
replicas and become unavailable.

The lesson here is that if you want to survive the failure of any three nodes in a
nine-node cluster, you need a replication factor of at least seven.

We’ll elaborate on these considerations in Chapter 12.

Summary
CockroachDB supports a wide range of deployment scenarios, and in this chapter,
we’ve given you an overview of the decision points for the various deployment
options and outlined the predeployment planning tasks.

A CockroachDB Cloud Basic or Standard deployment is the simplest option for
deploying CockroachDB. In a Basic/Standard deployment, you need only decide
upon execution region(s) and monthly budget. CockroachDB Cloud will scale auto‐
matically to suit workload, and you only pay for what you use.

If your workload requires dedicated hardware, you have the option of using
CockroachDB Cloud Advanced clusters or self-hosting your own CockroachDB
cluster in either a public cloud or your own hardware. Cloud deployments provide

332 | Chapter 9: Planning a Deployment

more flexibility in terms of scaling, but a Kubernetes “local cloud” can provide most
of the same advantages.

Managed cloud deployments and Kubernetes managed deployments are definitely
increasing in popularity; both options reduce operational complexity and allow for
more reactive scaling. However, an on-premises “bare metal” deployment is still a
common and fully supported configuration.

In the next chapter, we’ll deploy CockroachDB in a single-region configuration. We’ll
do so both manually, with the CockroachDB binary, and using orchestration via
Kubernetes.

Summary | 333

CHAPTER 10

Single-Region Deployment

In this chapter, we will describe the steps required to set up a self-hosted
CockroachDB cluster.

If you’ve decided to use—or are already using—a CockroachDB Cloud Basic, Stan‐
dard, or Advanced deployment, then congratulations! You can safely skip over this
chapter. However, if you’re deploying on your own hardware or on a cloud platform,
you have some work to do, and this chapter describes that work.

CockroachDB is not difficult to install, but distributed systems have more moving
parts than other software products, so installation may seem more involved than—for
example—installing MySQL or PostgreSQL.

CockroachDB installation instructions can change with each release, and there are
some edge cases that we don’t have space for in this chapter, so make sure that
you check out the “Production Checklist” (https://cockroa.ch/3J3Xylz) and “Manual
Deployment” (https://cockroa.ch/3NM1oU5) pages in the CockroachDB docs.

In this chapter, we will focus on the tasks involved in deploying to a single region.
In Chapter 11, we’ll extend to the additional considerations involved in a multiregion
deployment.

Deploying On-Premises or On-Cloud
For the on-premises parts of this section, we are deploying a three-node
CockroachDB cluster on Ubuntu servers, with a fourth Ubuntu node running a load
balancer. The CockroachDB nodes are called gubuntu1, gubuntu2, and gubuntu3.
The load balancer is mubuntu. Each node has a cockroachdb user installed, and the
CockroachDB binaries are already installed in /usr/local/bin. We’ll be using a fifth

335

https://cockroa.ch/3J3Xylz
https://cockroa.ch/3NM1oU5
https://cockroa.ch/3NM1oU5

machine—a Mac laptop—to perform the installation; we have called that the “home
system.”

Firewall Configuration
CockroachDB nodes expect to be able to communicate with each other over the SQL
port (by default 26257, configurable through the --sql-addr flag)—this port should
be accessible to all nodes in the cluster from all nodes in the cluster.

Applications also require access to the SQL port; any program that wishes to connect
to CockroachDB and anyone who wants to issue cockroach sql or other CLI com‐
mands will need access to the port. It’s generally wise, however, to limit as much
as possible the IP addresses that have access to the port, since this is potentially a
cyberattack vector. Use allowlists to restrict access to this port as much as possible.

Access to port 8080 is required to access the DB Console.

Operating System Configuration
CockroachDB can run successfully on most default configurations of Linux. How‐
ever, there are a couple of things to check.

Your Linux should have the standard C library glibc installed as well as the libcurses
library.

CockroachDB can require more than the default number of open file descriptors.
The absolute minimum number is about 2,000, but setting the file descriptors to
unlimited or at least 15,000 is recommended. The exact configuration procedures can
be OS, and version-specific; see the CockroachDB documentation (https://cockroa.ch/
3u6BBy3) for full instructions.

To increase the file descriptor limit on Ubuntu, we add nofile entries to the /etc/
security/limits.conf file. First, we see if any entries already exist:

guyharrison@gubuntu2:~$ sudo -i

root@gubuntu2:~# grep nofile /etc/security/limits.conf
- nofile - max number of open file descriptors

Because there are no entries, we append new entries. If there were existing entries, we
would, of course, need to edit them:

root@gubuntu2:~# echo '* soft nofile unlimited' \
 >>/etc/security/limits.conf
root@gubuntu2:~# echo '* hard nofile unlimited' \
 >>/etc/security/limits.conf

We need to make sure the line session required pam_limits.so appears both
in /etc/pam.d/common-session and /etc/pam.d/common-session-noninteractive:

336 | Chapter 10: Single-Region Deployment

https://cockroa.ch/3u6BBy3

1 On some Linux systems you may have to install system-timesyncd: sudo apt install systemd-timesyncd.

root@gubuntu2:~# grep pam_limits /etc/pam.d/common-session
root@gubuntu2:~# grep pam_limits /etc/pam.d/common-session-noninteractive
root@gubuntu2:~# echo 'session required pam_limits.so' \
 >>/etc/pam.d/common-session
root@gubuntu2:~# echo 'session required pam_limits.so' \
 >>/etc/pam.d/common-session-noninteractive

Also, check that the system-wide value in /proc/sys/fs/file-max is sufficient:

root@gubuntu2:~# cat /proc/sys/fs/file-max
9223372036854775807

You will need to reboot the system to ensure these settings are applied to all
processes.

Clock Synchronization On-Premises
We emphasized in Chapter 2 that CockroachDB requires robust time synchroniza‐
tion between nodes. By default, any clock skew higher than 500 ms may cause a
node to become unavailable. Clock skews below 500 ms affect performance because
CockroachDB may consequently need to retry reads whose transactional sequence
cannot be determined. In short, we want time synchronization to be as tight as
possible.

Linux OSs will almost always be configured with an NTP service active. You can
check the current configuration with timedatectl:

$ timedatectl
 Local time: Thu 2021-09-16 22:08:51 PDT
 Universal time: Fri 2021-09-17 05:08:51 UTC
 RTC time: Fri 2021-09-17 05:08:51
 Time zone: America/Los_Angeles (PDT, -0700)
System clock synchronized: yes
 NTP service: active
 RTC in local TZ: no

If timedatectl reports that the NTP service is inactive (unlikely), then enable it:1

$ timedatectl set-ntp true

The show-timesync argument can be used to show the existing NTP server
configuration:

$ timedatectl show-timesync
FallbackNTPServers=ntp.ubuntu.com
ServerName=ntp.ubuntu.com
ServerAddress=91.189.94.4
RootDistanceMaxUSec=5s
PollIntervalMinUSec=32s

Deploying On-Premises or On-Cloud | 337

PollIntervalMaxUSec=34min 8s
PollIntervalUSec=8min 32s
NTPMessage={ Leap=0, Version=4, Mode=4, Stratum=2, … }
Frequency=-1224761

For an on-premises deployment, the CockroachDB team recommends using Google
NTP servers because their “leap smear” (https://cockroa.ch/3J1Rava) implementation
avoids issues relating to leap seconds.

To implement the Google NTP servers, edit /etc/systemd/timesyncd.conf so that the
Google time servers are listed in the NTP entry within the [Time] section:

[Time]
NTP=time1.google.com time2.google.com time3.google.com time4.google.com

Now restart the timesyncd service and check that the service is pointing to Google
NTP servers:

$ systemctl restart systemd-timesyncd.service
$ timedatectl show-timesync
SystemNTPServers=time1.google.com time2.google.com time3.google.com ...
FallbackNTPServers=ntp.ubuntu.com
ServerName=time1.google.com
ServerAddress=216.239.35.0
RootDistanceMaxUSec=5s
PollIntervalMinUSec=32s
PollIntervalMaxUSec=34min 8s
PollIntervalUSec=1min 4s
NTPMessage={ Leap=0, Version=4, Mode=4, Stratum=1, Precision=-20, ... }
Frequency=2568984

All looks good! Of course, we need to do this on every node in the cluster.

If your hosts are using chrony or ntpd to synchronize time, the procedure is similar.
Add the Google time servers to /etc/chrony.conf or /etc/ntp.conf as appropriate and
restart the service. It’s very important that all nodes use the same time synchroniza‐
tion mechanism—although time is time everywhere, small inconsistencies with time
sync can have large implications for a distributed CockroachDB cluster.

Clock Synchronization on Cloud Platforms
While it is possible to use the on-premises time synchronization configuration on a
cloud platform, there are advantages to using the vendor’s own time synchronization
services when deploying on a public cloud such as Amazon or Google. The vendor’s
cloud synchronization generally involves specialized hardware installed in each data
center and region and is, therefore, capable of delivering tighter time synchronization
than would be possible using a generic configuration.

On Amazon AWS, the Amazon Time Sync Service is enabled by default if the
EC2 instance is based on the latest version of Amazon Linux. If you’re using a

338 | Chapter 10: Single-Region Deployment

https://cockroa.ch/3J1Rava

2 This recommendation is based on clock drift issues observed on Azure by the CockroachDB team. Check the
documentation (https://cockroa.ch/3LC5Ena) for updates for this issue.

non-Amazon image or an older Amazon Machine Image (AMI), follow the instruc‐
tions provided by Amazon (https://cockroa.ch/3J6aKGM) to install and configure the
chrony time service to use the Amazon time service using the 169.254.169.123 IPV4
address or the fd00:ec2::123 IPV6 address.

If all is well, you should see the 169.254.169.123 IPV4 address or the fd00:ec2::123
IPV6 address from the output of a chronyc sources command:

[ec2-user@ip-172-30-0-188 ~]$ chronyc sources
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
^* 169.254.169.123 3 4 377 2 -8333ns[-13us] +/- 477us
^- 165.227.219.198 2 6 77 41 +45us[+35us] +/- 43ms
^- clock.sjc.he.net 1 6 137 38 +2869us[+2859us] +/- 34ms
^- hc-007-ntp1.weber.edu 1 6 77 40 +8155us[+8145us] +/- 33ms
^- ntp.wdc1.us.leaseweb.net 2 6 77 40 +194us[+184us] +/- 125ms

On Google Cloud, follow the Google instructions (https://cockroa.ch/3JcVYOd) to
configure your time service to use metadata.google or metadata.google.internal.
You should then see metadata.google or metadata.google.internal as a source
from the chronyc sources command:

gharriso@ubuntu-us:~$ chronyc sources
210 Number of sources = 1
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
^* metadata.google.internal 2 6 77 24 -27us[+302us] +/- 499us

On Microsoft Azure, CockroachDB recommends that you disable the default
Hyper-V Time Synchronization Service and configure the NTP service as shown
for an on-premises deployment.2

To disable the service, obtain the address of the Time Synchronization device:

$ sudo -i
$ cd /tmp
$ curl -O \
 https://raw.githubusercontent.com/torvalds/linux/master/tools/hv/lsvmbus

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 3555 100 3555 0 0 79000 0 --:--:-- --:--:-- --:--:-- 79000

$ python lsvmbus -vv | grep -w "Time Synchronization" -A 3
VMBUS ID 11: Class_ID = {9527e630-...ab0175caf} - [Time Synchronization]

Device_ID = {2dd1ce17-079e-403c-b352-a1921ee207ee}

Deploying On-Premises or On-Cloud | 339

https://cockroa.ch/3LC5Ena
https://cockroa.ch/3J6aKGM
https://cockroa.ch/3J6aKGM
https://cockroa.ch/3JcVYOd

Sysfs path: /sys/bus/vmbus/devices/2dd1ce17-079e-403c-b352-a1921ee207ee
Rel_ID=11, target_cpu=0

Now, push that Device ID into the unbind file at /sys/bus/vmbus/drivers/hv_utils
(or /sys/bus/vmbus/drivers/hv_util on some Linuxes):

$ echo 2dd1ce17-079e-403c-b352-a1921ee207ee \
 >/sys/bus/vmbus/drivers/hv_utils/unbind

You can now install the NTP service using the instructions for on-premises that we
presented earlier in this chapter.

Creating Certificates
Each CockroachDB node will require a certificate to prove its identity to other
members of the cluster and to clients that are requesting to connect. Of course, it’s
possible to run CockroachDB in insecure mode (https://cockroa.ch/3NMliOz), but
this is not a recommended production configuration, so we don’t describe it here.

We generally create certificates on a separate host from the production system
for security reasons. We can create certificates on any secure system that has the
Cockroach binary installed—the home system.

On the home system, we start by creating a certificate authority (CA) certificate:

mkdir -p $HOME/cockroach/certs
mkdir -p $HOME/cockroach/ca-cert

cockroach cert create-ca \
 --certs-dir=$HOME/cockroach/certs \
 --ca-key=$HOME/cockroach/ca-cert/ca.key

Using a Public Certificate Authority
For an internal cluster, our self-generated CA certificate is sufficient for most pur‐
poses. However, it does result in some warnings when accessing the DB Console.

The alternative is to use a certificate generated by a public CA that is trusted by
browsers such as Google Chrome. See the CockroachDB documentation (https://cock
roa.ch/33ULHrA) for more information.

Next, we generate certificates for each node in the cluster. Each certificate should
list the endpoints that the node can respond from, including those of any load
balancers. Our load balancer is going to be installed on the mubuntu host (IP address
192.168.0.197). The certificate lists gubuntu1, gubuntu1’s IP address, localhost
addresses, and addresses for the mubuntu load balancer:

340 | Chapter 10: Single-Region Deployment

https://cockroa.ch/3NMliOz
https://cockroa.ch/33ULHrA

$ cockroach cert create-node \
 gubuntu1 \
 localhost \
 127.0.0.1 \
 mubuntu \
 mubuntu.local \
 192.168.0.197 \
--certs-dir=$HOME/cockroach/certs \
--ca-key=$HOME/cockroach/ca-cert/ca.key \
--overwrite

We copy that certificate to the gubuntu1 node:

$ cd $HOME/cockroach/certs
$ scp ca.crt node.crt node.key cockroachdb@gubuntu1:cockroach/certs
cockroachdb@gubuntu1's password:
ca.crt 100% 1151 300.6KB/s 00:00
node.crt 100% 1281 302.1KB/s 00:00
node.key 100% 1675 395.6KB/s 00:00

We then repeat this process for each of the other nodes. For example, here we
perform the same certificate generation and copy for gubuntu2:

cockroach cert create-node \
 192.168.0.50 \
 gubuntu2 \
 gubuntu2.local \
 localhost \
 127.0.0.1 \
 mubuntu \
 mubuntu.local \
 192.168.0.197 \
--certs-dir=$HOME/cockroach/certs \
--ca-key=$HOME/cockroach/ca-cert/ca.key

ssh cockroachdb@gubuntu2 "mkdir -p cockroach/certs"

cd $HOME/cockroach/certs
scp ca.crt node.crt node.key cockroachdb@gubuntu2:cockroach/certs

To connect remotely to our cluster without a password (for initial setup), we’ll need a
root client certificate. For now, we’ll just create this on the home system:

$ cockroach cert create-client \
 root \
 --certs-dir=$HOME/cockroach/certs \
 --ca-key=$HOME/cockroach/ca-cert/ca.key

Deploying On-Premises or On-Cloud | 341

Configuring the Nodes
To start each Cockroach server node, we need to copy the certificates into the appro‐
priate directory and configure a service to run the cockroach binary. In the previous
step, we copied the certificates into the directory ~cockroachdb/cockroach/certs. Now
we move those certificates into the /var/lib/cockroachdb/certs directory:

cockroachdb@gubuntu1:~$ sudo mkdir /var/lib/cockroachdb
[sudo] password for cockroachdb:
cockroachdb@gubuntu1:~$ sudo chown cockroachdb:cockroachdb /var/lib/cockroachdb
cockroachdb@gubuntu1:~$ mv ~/cockroach/certs /var/lib/cockroachdb

To configure CockroachDB as a service, we create a systemd service definition in /etc/
system/system. This file defines the command line (ExecStart), working directory
(WorkingDirectory), and the account that runs the CockroachDB binary (User).
Note in particular that the --advertise-addr argument within the ExecStart entry
should match the current node:

$ cat /etc/systemd/system/cockroachdb.service
[Unit]
Description=Cockroach Database cluster node
Requires=network.target
[Service]
Type=notify
WorkingDirectory=/var/lib/cockroachdb
ExecStart=/usr/local/bin/cockroach start --certs-dir=certs
 --advertise-addr=gubuntu1 --join=gubuntu1,gubuntu2,gubuntu3
TimeoutStopSec=60
Restart=always
RestartSec=10
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=cockroachdb
User=cockroachdb
[Install]

The settings for the ExecStart are the simplest that could possibly work. However,
on a production system you’ll want to additionally specify the following:

--cache

This specifies the amount of memory to cache data in the KV store. It defaults
to 128 MB, which is usually too small. You may specify an exact amount or a
proportion of physical memory (0.5 for 50% of physical memory, for instance).
We’ll come back to this setting in Chapter 14.

--max-sql-memory

This specifies the amount of memory for the SQL engine. This includes sort
and hash areas and intermediate data sets. This defaults to .25 (25% of physical
memory).

342 | Chapter 10: Single-Region Deployment

--locality

This includes information about the node’s physical location. These values
are used when configuring multiregion deployments and are also used by
CockroachDB’s diversity algorithm to determine the optimal distribution of
ranges.

So, for instance, to start a server in the us-west-1 region, us-west-1a zone with
35% of memory allocated to SQL memory and 35% allocated to KV store cache, our
ExecStart might look like this:

ExecStart=/usr/local/bin/cockroach start --certs-dir=certs
--advertise-addr=gubuntu2 --join=gubuntu1,gubuntu2,gubuntu3
--locality=region=us-west-1,zone=us-west-1a
--max-sql-memory=.35 --cache=.35

Once the file is created, we can start the service using systemctl:

cockroachdb@gubuntu1:~$ sudo systemctl start cockroachdb
cockroachdb@gubuntu1:~$ sudo systemctl status cockroachdb

 cockroachdb.service - Cockroach Database cluster node
 Loaded: loaded (/etc/systemd/system/cockroachdb.service;)
 Active: active (running) since Sun 2021-09-05 11:49:43 AEST; 1min 31s ago
 Main PID: 8650 (cockroach)
 Tasks: 10 (limit: 9485)
 Memory: 119.3M
 CGroup: /system.slice/cockroachdb.service
 └─8650 /usr/local/bin/cockroach start --certs-dir=certs
--advertise-addr=gubuntu1 --join=gubuntu1,gubuntu2,gubuntu3

Sep 05 11:49:43 gubuntu1 systemd[1]: Started Cockroach Database cluster node.

We now repeat these steps for the other nodes—gubuntu2 and gubuntu3. We make
sure that the --advertise-addr listed in the cockroachdb.service file is different for
each node in the cluster.

Creating a Ballast File
In the event that the filesystem containing CockroachDB data files fills up, the
CockroachDB system might be unable to start up. To mitigate this possibility,
CockroachDB automatically creates a ballast file at node startup. Should disk space be
exhausted, the ballast file can be removed, and the node can continue to function.

The ballast file defaults to 1% of total disk capacity or 1 GiB, whichever is smaller.
The size of the ballast file may be configured using the --store flag to cockroach
start with a ballast-size field; this field accepts the same value formats as the size
field.

Deploying On-Premises or On-Cloud | 343

3 Log location and configuration can be fine-tuned (https://cockroa.ch/3r21JIy). We’ll come back to that in
Chapter 14.

During node startup, if available disk space on at least one store is less than or equal
to half the ballast file size, the process will exit immediately with the exit code 10,
signifying Disk Full.

To allow the node to start, you can manually remove the EMERGENCY_BALLAST
file, which is located in the store’s cockroach-data/auxiliary directory.

In versions of CockroachDB earlier than 21.2, ballast files could be created manually
with the cockroach debug ballast command.

Initializing the Cluster
Once the CockroachDB service is running on each node, we can initialize the cluster.
From the home machine, we issue a cockroach init command:

$ cockroach init --certs-dir=$HOME/cockroach/certs --host=gubuntu1
Cluster successfully initialized

We should now be able to connect to nodes in the cluster using the cockroach sql
command:

$ cockroach sql --certs-dir=$HOME/cockroach/certs --host=gubuntu1
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Enter \? for a brief introduction.
#
root@gubuntu1:26257/defaultdb>

We can also issue a cockroach node status command to make sure that all the
nodes are working:

$ cockroach node status --certs-dir=$HOME/cockroach/certs --host=gubuntu2

 id | address | started_at | is_av | is_live
-----+----------------+-------------------------------------+-------+----------
 1 | gubuntu1:26257 | 2021-09-05 22:57:56.58651+00:00:00 | true | true
 2 | gubuntu2:26257 | 2021-09-05 22:58:11.223174+00:00:00 | true | true
 3 | gubuntu3:26257 | 2021-09-05 23:02:37.353788+00:00:00 | true | true

If there’s trouble, try looking at the logs for each node in the /var/lib/cockroachdb/
cockroach-data/logs directory. This command will tail the most recent log:3

cd /var/lib/cockroachdb/cockroach-data/logs;tail -f `ls -t |head -1`

344 | Chapter 10: Single-Region Deployment

https://cockroa.ch/3r21JIy

Typical problems that can occur during cluster setup include:

Incorrect certificates
For instance, you might accidentally copy the certificate for node1 to node2.

DNS errors
Each node needs to be able to correctly resolve the address of each node listed in
the –join argument.

Firewall errors
The ports for 26257 and 8080 need to be open to other nodes in the cluster and
to the client node.

CockroachDB documentation (https://cockroa.ch/3LXmAoz) lists other troubleshoot‐
ing steps that you can undertake in the event your cluster does not initialize.

Creating the First User
To connect to the DB Console and to connect from SQL clients without the client
root certificate, we’ll need to create a user in the database:

$ cockroach sql --host=gubuntu1 --certs-dir=$HOME/cockroach/certs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Enter \? for a brief introduction.
#
root@gubuntu1:26257/defaultdb>
 CREATE USER consoleAdmin WITH PASSWORD
 ‘EfV2ZwV1oHlsQdW9XW9ovKDx0vm6GB’;
CREATE ROLE

Time: 126ms total (execution 121ms / network 5ms)

You might want to assign other roles to this user depending on your needs. We’ll
discuss user configuration further in Chapter 12.

We can then navigate to https://${nodeName}:8080 to visit the DB Console. If you
use a self-generated CA certificate, you’ll get a warning because your browser won’t
recognize the CA certificate. Figure 10-1 shows the warning.

Deploying On-Premises or On-Cloud | 345

https://cockroa.ch/3LXmAoz

Figure 10-1. Insecure warning when connecting to cluster console

It’s safe to proceed past this warning, but if it concerns you, you should consider sign‐
ing your certificates with a public certificate authority generated certificate (https://
cockroa.ch/33ULHrA).

Figure 10-2 shows the database console for our freshly created three-node cluster.

The DB Console shown in Figure 10-2 shows the cluster UUID. If the user specifies
the --cluster-name flag during cockroach init, the console will show that name
instead. This has the added benefit of preventing nodes from being added to the
wrong cluster—the cluster name must match across all nodes.

346 | Chapter 10: Single-Region Deployment

https://cockroa.ch/33ULHrA

Figure 10-2. DB Console for a three-node cluster

Installing a Load Balancer (On-Premises)
As we discussed way back in Chapter 2, a load balancer distributes SQL connections
across the members of a CockroachDB cluster and thereby improves performance as
well as improving maintainability by allowing seamless connection shifting when a
node goes down.

With a single load balancer, client connections are resilient to node
failure, but the load balancer itself is a point of failure. Therefore,
it’s best to make load balancing resilient as well by using multiple
load-balancing instances, with a mechanism such as floating IPs or
DNS to select load balancers for clients.

Deploying On-Premises or On-Cloud | 347

For an on-premises implementation, the HAProxy load balancer is a popular choice
and directly supported by CockroachDB, so we’ll use that here.

On our home machine, we can generate a haproxy.cfg configuration file as follows:

$ cockroach gen haproxy \
--certs-dir=$HOME/cockroach/certs \
--host=gubuntu1

The default settings for HAProxy are usually adequate, but you may modify settings
as appropriate:

$ cat haproxy.cfg

global
 maxconn 4096

defaults
 mode tcp
 # Timeout values should be configured for your specific use.
 timeout connect 10s
 timeout client 1m
 timeout server 1m
 # TCP keep-alive on client side. Server already enables them.
 option clitcpka

listen psql
 bind :26257
 mode tcp
 balance roundrobin
 option httpchk GET /health?ready=1
 server cockroach1 gubuntu1:26257 check port 8080
 server cockroach2 gubuntu2:26257 check port 8080
 server cockroach3 gubuntu3:26257 check port 8080

We copy haproxy.cfg to the load balancer node:

$ scp haproxy.cfg cockroachdb@mubuntu:~
haproxy.cfg

On the load balancer node (mubuntu in this case), we install the HAProxy software:

$ sudo apt install haproxy
Reading package lists... Done
Building dependency tree
<snip>
Created symlink /etc/systemd/system/multi-user.target.wants/haproxy.service
 → /lib/systemd/system/haproxy.service.
<snip>
Processing triggers for ureadahead (0.100.0-21) ...
ureadahead will be reprofiled on next reboot

Now we copy the config file that we copied over earlier into the standard location for
the HAProxy service (in this case /etc/haproxy):

348 | Chapter 10: Single-Region Deployment

root@mubuntu:~# cd /etc/haproxy
root@mubuntu:/etc/haproxy# cp haproxy.cfg haproxy.cfg.old
root@mubuntu:/etc/haproxy# cp ~cockroachdb/haproxy.cfg .

With the new configuration file in place, we can now restart the HAProxy service:

cockroachdb@mubuntu:~$ sudo systemctl restart haproxy
cockroachdb@mubuntu:~$ sudo systemctl status haproxy
● haproxy.service - HAProxy Load Balancer

 Active: active (running) since Mon 2021-09-06 10:29:16 AEST; 4s ago
 Docs: man:haproxy(1)
 CGroup: /system.slice/haproxy.service
 ├─3319233 /usr/sbin/haproxy -Ws -f /etc/haproxy/haproxy.cfg
 -p /run/haproxy.pid
 └─3319235 /usr/sbin/haproxy -Ws -f /etc/haproxy/haproxy.cfg
 -p /run/haproxy.pid

Back on the home system, confirm that you can connect to the cluster through the
node balancer node:

$ cockroach sql --host=mubuntu --certs-dir=$HOME/cockroach/certs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Enter \? for a brief introduction.
#
root@mubuntu:26257/defaultdb> show databases;
 database_name | owner | primary_region | regions | survival_goal
----------------+-------+----------------+---------+----------------
 defaultdb | root | NULL | {} | NULL
 postgres | root | NULL | {} | NULL
 system | node | NULL | {} | NULL
(3 rows)

Cloud Load Balancers
HAProxy is a good choice for an on-premises deployment, but if you’re deploying to
a public cloud, the cloud vendor’s load-balancing solutions are preferable.

Load-balancing configuration for the cloud platforms is straightforward. The load
balancer should listen to TCP port 26257 and distribute requests in a round-robin
fashion to the CockroachDB nodes. The health check should be configured to use
port 8080 with the /health?ready=1 path.

On AWS, use the AWS Load Balancing service. Create a target group that contains all
of the instances in your cluster and listens on port 26257. You should then be able to
connect to your cluster using the provisioned IP address for the load balancer. See the
CockroachDB documentation (https://cockroa.ch/3u6Uj8R) for more details.

Deploying On-Premises or On-Cloud | 349

https://cockroa.ch/3u6Uj8R

On Google Cloud, you can use the TCP Proxy Load Balancing service, which creates a
single IP address that is routed to the instances closest to the user. Note that the TCP
Proxy load balancer does not support fine-grained firewall access rules, so in some
cases HAProxy might be a better alternative. See the CockroachDB documentation
(https://cockroa.ch/3J9MgfH) for more details.

On Azure, you can use Azure load balancing, listening on port 26257. See the
CockroachDB documentation (https://cockroa.ch/3u4GVlB) for more details.

Configuring Regions and Zones
We’ll go into some depth on the deployment of a multiregion distribution in the next
chapter. However, if your deployment is going to be multiregion, then you should be
setting regions and zones with the --locality flag during node startup. For instance,
if gubuntu2 was in the us-west-1 region, us-west-1a zone, then we’d specify the
following in the cockroachdb.service file:

ExecStart=/usr/local/bin/cockroach start --certs-dir=certs
--advertise-addr=gubuntu2 --join=gubuntu1,gubuntu2,gubuntu3
--locality=region=us-west-1,zone=us-west-1a

The --locality flag is also an important consideration for single-region clusters,
as CockroachDB’s diversity algorithm will use a node’s locality for optimal replica
placement.

Deploying on Kubernetes
We’ve waxed lyrical about Kubernetes in previous chapters, but now we’ll let the
rubber meet the road in an actual production Kubernetes installation. In this section,
we’ll configure a three-node cluster with a similar configuration to the self-hosted
example from the previous section.

In this example, we’ll install CockroachDB on Google Kubernetes Engine (GKE),
though the instructions are mostly generic and should work on other Kubernetes
implementations. We created our Kubernetes cluster using a command like this:

$ gcloud container clusters create crdb --zone=us-central1-c \
--machine-type n2-standard-4 \
--disk-type=pd-ssd --disk-size=200GB

Creating cluster crdb in us-central1-c...done.

Created [https://container.googleapis.com/v1/projects/
 /zones/us-central1-c/clusters/crdb].
kubeconfig entry generated for crdb.
NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE N_NODES STATUS
crdb us-central1-c 1.20.9-gke.701 35.239.71.140 n2-standard-4 3 RUNNING

350 | Chapter 10: Single-Region Deployment

https://cockroa.ch/3J9MgfH
https://cockroa.ch/3u4GVlB

$ gcloud container clusters get-credentials crdb --zone us-central1-c

Note that we chose a machine type (n2-standard-4) that has 4 vCPUs and 16 GB
of memory. This matters when we configure our CockroachDB nodes later. We also
chose pd-ssd as the disk type, ensuring that we have high-performance SSD drives.

Initializing the Operator
Our first step is to apply the CockroachDB Kubernetes Operator CustomResource‐
Definition (CRD) to the cluster:

$ kubectl apply -f https://cockroa.ch/crds_yaml

customresourcedefinition.apiextensions.k8s.io/crdbclusters.crdb.cockroachlabs.com
created

We then apply the operator manifest. First, let’s download the default manifest:

$ wget https://cockroa.ch/operator-yaml -O operator.yaml

2021-12-30 15:00:31 (28.2 MB/s) - ‘operator.yaml’ saved [7123/7123]

You probably won’t need to edit this file unless you want to change the namespace
in which CockroachDB is to run. The operator.yaml file installs everything into
the cockroach-operator-system namespace. If you want to install into a different
namespace, then change all instances of namespace: cockroach-operator-system
accordingly.

Once you’ve edited the operator.yaml file (if necessary), apply it to your cluster:

$ kubectl apply -f operator.yaml
namespace/cockroach-operator-system created
serviceaccount/cockroach-operator-sa created
clusterrole.rbac.authorization.k8s.io/cockroach-operator-role created
clusterrolebinding.rbac.authorization.k8s.io/cockroach-operator-rolebinding
 created
service/cockroach-operator-webhook-service created
deployment.apps/cockroach-operator-manager created
mutatingwebhookconfiguration.admissionregistration.k8s.io/
 cockroach-operator-mutating-webhook-configuration created
validatingwebhookconfiguration.admissionregistration.k8s.io/
 cockroach-operator-validating-webhook-configuration created

We should now see the CockroachDB operator running in a pod within the cluster:

$ kubectl get pods --namespace cockroach-operator-system
NAME READY STATUS RESTARTS AGE
cockroach-operator-manager-74f6c548b8-2sxgr 1/1 Running 0 3m57s

Deploying on Kubernetes | 351

Initializing the Cluster
Now we can initialize the cluster. Let’s grab the example configuration from the
operator’s GitHub repository:

$ wget https://cockroa.ch/example_yaml -O example.yaml

Saving to: ‘example.yaml’

The file example.yaml contains the specification for a default three-node cluster.
You should get familiar with this file because it includes parameters that you may
well want to change. For instance, you can see in the upcoming example that the
minimum and maximum resource allocations are specified in the requests and
limits sections.

You might increase the limit setting to ensure that the CockroachDB nodes have
access to a reasonable amount of the memory for each node and make sure that the
request value is not so high that they might not be able to obtain those resources.
Remember, if the limits are too high, then you might waste cluster resources, but if
the requests are too high, Kubernetes might be unable to find enough resources to
run the CockroachDB pod.

apiVersion: crdb.cockroachlabs.com/v1alpha1
kind: CrdbCluster
metadata:
 # this translates to the name of the statefulset that is created
 name: cockroachdb
spec:
 dataStore:
 pvc:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: "60Gi"
 volumeMode: Filesystem
 resources:
 requests:
 cpu: "2"
 memory: "8Gi"
 limits:
 cpu: "2"
 memory: "8Gi"
 tlsEnabled: true
You can set either a version of the db or a specific image name
cockroachDBVersion: v24.2.0
 image:
 name: cockroachdb/cockroach:v24.2.0
 # nodes refers to the number of crdb pods that are created

352 | Chapter 10: Single-Region Deployment

 # via the statefulset
 nodes: 3

Remember that our Kubernetes nodes have 4 vCPUs and 16 GB of memory each;
in the example.yaml we’ve specified a limit of 2 CPUs and 8 GB of memory per
CockroachDB node. So, in this case we should consider raising the limit to
allow CockroachDB to use more of the cluster’s resources. However, don’t assume
that the CockroachDB pod can use the entire resources of a Kubernetes node. Kuber‐
netes clusters will have some internal pods deployed, and the operator itself requires
resources. Therefore, you should never try to acquire all of a pod’s resources. For our
4 CPU, 16 GB Kubernetes configuration, we should request no more than 3 CPUs
and perhaps 12 GB of memory.

You can also change the number of nodes in the CockroachDB cluster by simply
modifying the nodes value.

The operator will install self-signed certificates for the cluster by default. If you want
to use a public CA, consult the CockroachDB documentation (https://cockroa.ch/
3DI6cFw).

When you’re happy with the YAML file, you can issue a create command to create
the cluster:

$ kubectl create -f example.yaml
crdbcluster.crdb.cockroachlabs.com/cockroachdb created

When all is well, you should see three database pods and the cockroach operator
running in the cluster:

$ kubectl get pods --namespace cockroach-operator-system
NAME READY STATUS RESTARTS AGE
cockroach-operator-manager-74f6c548b8-2sxgr 1/1 Running 0 10m
cockroachdb-0 1/1 Running 0 86s
cockroachdb-1 1/1 Running 0 86s
cockroachdb-2 1/1 Running 0 86s

It’s handy to default the Kubernetes namespace to the CockroachDB namespace,
so we don’t have to include --namespace cockroach-operator-system in every
command:

$ kubectl config set-context --current --namespace=cockroach-operator-system
Context "crdb" modified.

The most likely failure scenario at this point would be a resource limitation. For
instance, if a pod stays in Pending status indefinitely, it may be that Kubernetes is
unable to find enough memory to launch it. You can use the describe pod command
to look for warnings or errors:

$ kubectl describe pod cockroachdb-2 |grep Warning
 Warning FailedScheduling 4m43s (x2 over 4m43s) default-scheduler
 0/3 nodes are available: 3 pod has unbound immediate PersistentVolumeClaims.

Deploying on Kubernetes | 353

https://cockroa.ch/3DI6cFw

 Warning FailedScheduling 4m41s default-scheduler
 0/3 nodes are available: 3 Insufficient cpu, 3 Insufficient memory.

You can use the kubectl logs command to examine the logs for individual pods:

$ kubectl logs cockroachdb-0 |tail

‹compact 1 0 B (size == estimated-debt)›
‹ memtbl 2 64 M›
‹zmemtbl 0 0 B›
‹ ztbl 0 0 B›
‹ bcache 704 66 M 87.2% (score == hit-rate)›
‹ tcache 98 59 K 96.8% (score == hit-rate)›
‹ titers 3›
‹ filter - - 72.2% (score == utility)›
I210920 01:39:10.955848 266 server/status/runtime.go:525 ⋮ [n1] runtime ...
I210920 01:39:20.954284 266 server/status/runtime.go:525 ⋮ [n1] runtime ...

Creating a Client Pod
It’s handy to have a “client” pod in the cluster that is able to issue cockroach sql
commands. The following command creates such a pod:

$ kubectl create -f https://cockroa.ch/client-secure-operator_yaml
pod/cockroachdb-client-secure created

We can attach to that pod and issue cockroach sql commands. Here we create our
first user in the cluster (we’ll need it later):

kubectl exec -it cockroachdb-client-secure \
-- ./cockroach sql \
--certs-dir=/cockroach/cockroach-certs \
--host=cockroachdb-public
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Enter \? for a brief introduction.
#
root@cockroachdb-public:26257/defaultdb>
CREATE USER guy WITH PASSWORD
 'N2U0OWEyMDE2OGMyNjkwNDI1MzVhYmU5';

CREATE ROLE

Load Balancing
The CockroachDB Kubernetes Operator creates a cockroachdb-public service that
can be used as the target for connections. We used that service earlier to connect from
the CockroachDB client. However, despite its name, the cockroachdb-public service
is not really public—the IP address it creates is available only within the cluster.

354 | Chapter 10: Single-Region Deployment

4 This is one reason for using a CA certificate from a known public authority.

You could use this service to connect an application running inside the Kubernetes
cluster, but not for external connections.

To connect to the DB from outside the cluster, we need a load balancer service, which
can be created using the following definition:

apiVersion: v1
kind: Service
metadata:
 name: cockroach-lb-service
spec:
 selector:
 app.kubernetes.io/component: database
 app.kubernetes.io/instance: cockroachdb
 app.kubernetes.io/name: cockroachdb
 crdb: is-cool
 type: LoadBalancer
 ports:
 - name: sql
 protocol: TCP
 port: 26257
 targetPort: 26257
 - name: http
 protocol: TCP
 port: 8080
 targetPort: 8080

We can then create the load-balancing service as follows:

$ kubectl apply -f loadBalancer.yaml

After a while, we’ll see the load balancer operational and serving external ports:

$ kubectl get service cockroach-lb-service
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S)
cockroach-lb-service LoadBalancer 10.27.252.140 104.197.158.47
26257:31430/TCP,8080:30088/TCP

We can now use the EXTERNAL-IP address to connect to the database console. While
it’s possible to connect to https://104.197.158.47:8080 to view the database con‐
sole, your browser will protest that it doesn’t recognize the CA.4

For a database connection, we are going to need at least the CA certificate. We can
copy that from one of the CockroachDB pods:

$ mkdir certs

$ kubectl exec cockroachdb-client-secure -it -- cat cockroach-certs/ca.crt \
 >certs/ca.crt

Deploying on Kubernetes | 355

$ chmod 600 certs/*

Now we can connect to the CockroachDB cluster using the username and password
that we created earlier, the IP address of the load balancer, and the CA certificate we
just copied:

$ cockroach sql --url
'postgres://guy:N2U0OWEyMDE2OGMyNjkwNDI1MzVhYmU5@104.197.158.47:26257
?sslmode=verify-ca&sslrootcert=certs/ca.crt'
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
#
Enter \? for a brief introduction.
#
guy@104.197.158.47:26257/defaultdb>

Exposing the CockroachDB cluster to a wide area network (WAN) or the internet
may be desirable in some cases but does raise security concerns. We’ll discuss mitiga‐
tions in Chapter 13, but the following are possible configurations to mitigate the risk:

• Instead of creating an external load balancer, colocate the application that needs•
access to the CockroachDB cluster in the same Kubernetes cluster.

• If the application runs outside of the Kubernetes environment, consider VPC•
Network Peering (https://cockroa.ch/3DDMkmC) to enable connectivity between
the application and the internal cockroach-public service.

• If VPC peering is not an option, then you should set up firewall rules (https://•
cockroa.ch/36Ms32B) to limit connections to known IP addresses.

Other Kubernetes Tasks
We’ve really just scratched the surface of the management of a Kubernetes console.
The CockroachDB documentation (https://cockroa.ch/3j5z7tn) has further details on
configuring, scaling, and monitoring a Kubernetes deployment. However, it’s worth
recognizing just how powerful Kubernetes is. The entire process of deploying a
production CockroachDB cluster in the cloud can be completed in under one hour,
and it’s not much more difficult to create an 80-node cluster than a 3-node cluster.

Summary
If you’ve made your way through this chapter, then you’re probably particularly well
placed to appreciate the benefits of a CockroachDB Cloud deployment. None of the
activities outlined in this chapter are required for cloud deployments!

356 | Chapter 10: Single-Region Deployment

https://cockroa.ch/3DDMkmC
https://cockroa.ch/3DDMkmC
https://cockroa.ch/36Ms32B
https://cockroa.ch/3j5z7tn

However, while a self-hosted deployment does involve some complexity, it’s by no
means overwhelming. The tasks outlined in this chapter should allow you to set up
a production cluster without too much trouble. As we’ve seen, creating a self-hosted
cluster on Kubernetes is even easier, since Kubernetes automates most of the tasks
required in the self-hosted procedure.

Nonetheless, we’re still arguably at the starting point for some production implemen‐
tations. We have not yet addressed many operational tasks, such as security, monitor‐
ing, and backup, and we have yet to fully explore the configuration of a multiregion
cluster. In the next chapter, we’ll dive deep into multiregion deployment, and in
the following chapters, we’ll go farther into the world of production CockroachDB
administration.

Summary | 357

CHAPTER 11

Multiregion Deployment

Multiregion deployments allow a CockroachDB database to span multiple geographic
regions. The configuration of a multiregion deployment has implications for the
cluster’s fault-tolerance and for regional performance. Generally speaking, we config‐
ure a CockroachDB cluster into regions to achieve one or more of the following
objectives:

• To allow the cluster to continue servicing requests when the computing resources•
in one of the cluster’s regions becomes unavailable.

• To ensure that users of a geographically distributed database can enjoy low-•
latency database operations.

• To achieve compliance with regional data regulations.•

These objectives are not completely incompatible, but there are some trade-offs
involved between them. It’s important to understand how to balance latency and high
availability in a manner that suits your circumstances.

Multiregion Concepts
The multiregion capabilities of CockroachDB exercise some of CockroachDB’s most
unique architectural features. Some of the underlying algorithms can be challenging.
However, the core concepts of a multiregion CockroachDB helpfully abstract much of
that into simple concepts such as regions, zones, and survival goals.

Regions and Zones
A region is a broad geographical region that has a set of CockroachDB nodes
deployed within it. Regions are defined at node start-up via the --locality flag and

359

can be anything you want them to be, but it only really makes sense to define a region
across an area that either has some sort of network adjacencies, distinct workload or
user characteristics, or legal requirements.

One of the regions in a database is the primary region. The primary region is the
default region for all the tables in a database.

Within a region, you define one or more zones. As with regions, zones are defined
arbitrarily at node start-up via the --locality flag but will typically be aligned with
data centers within a region (though they might just as easily be defined as racks
within a highly redundant data center).

In other contexts, zones are sometimes called availability zones. The idea is that a
zone represents some sort of single point of failure. When a zone is defined as a data
center, then we can assume that in the event of a data center failure, all the nodes
within that zone will fail. It makes a lot less sense to define a zone spanning data
centers unless the data centers had some common point of failure (both dependent
on the same power station, for instance).

Figure 11-1 provides an example of a three-region global deployment with three
zones in each region.

Figure 11-1. Example of regions and zones in a global CockroachDB deployment

Each region represents a broad geographical region that we assume has some impor‐
tance to the CockroachDB application. Each zone in the region is represented by a
city in which one or more CockroachDB nodes are running.

In practice, regions are often more narrowly defined and often align with the region
and zone maps for a public cloud platform. For instance, if you are running on
Amazon AWS, then your zones will almost certainly align with AWS zones that

360 | Chapter 11: Multiregion Deployment

represent specific data centers. Amazon supports over 20 regions, with 4 in the US.
Each of these regions has three availability zones, representing three distinct data
centers in the region.

Survival Goals
Each database in the cluster has a survival goal that determines the trade-off between
latency and survivability. Be aware that sometimes we might say database to refer to
an entire CockroachDB deployment, but in this case we’re talking about databases as
defined by CREATE DATABASE statements. Each of these databases can have different
survival goals:

• Zone failure is the default survival goal. The database will remain available for•
reads and writes even if a node in a zone fails. Multiple zone failures might still
be survivable provided you have configured enough nodes in the region and an
appropriate replication factor.

• When a database is configured for region failure then the database will be fully•
available even in the event of a full region failure. To achieve this, data must
be replicated to another region, which in most circumstances will reduce write
performance.

Figure 11-2 illustrates a zone failure within a database with a zone survival goal. The
data ranges in question are maintained in three replicas within the US region (the
default region), and a failure of any single zone (in this case, the New York zone) in
that region allows the database to continue to function with two replicas.

Figure 11-2. Example of a zone failure in zone survival goal

Multiregion Concepts | 361

Figure 11-3 shows a region failure for a database with a regional survival goal. As a
consequence of setting a regional survival goal for a database, the replication factor
is automatically increased to five instead of the default three and the replicas are
distributed across regions. When the US region fails, there are still three copies of the
data in other regions and database operations can continue.

Figure 11-3. Example of a region failure in regional survival goal

It’s true that three replicas in different regions would be enough to survive region-
level failures. However, CockroachDB increases the replication factor to improve
the handling of smaller (node- or zone-level) failures within the primary region. If
the replication factor was left at three, then the failure of one node or zone within
the primary region would mean that all reads would have to go to the secondary
region, greatly increasing latency. Because node failures are much more common
than region failures, we increase the replication factor so that they have a smaller
impact on performance.

The region/zone survival goal is your biggest single “switch” to configure a multi‐
region deployment. Zone survival results in the best performance, while regional
survival promotes greater survivability in case of large-scale outages or network
partitions. When deciding between the two, the following considerations are relevant:

• In the big public cloud platforms, failures of entire regions are rare but not•
unheard of. For instance, as we write this, the Google Cloud Australian southeast
region had recently suffered a 90-minute outage. The configuration shown in
Figure 11-2 could not have remained completely available during that period.
You shouldn’t assume on any platform that a regional outage is vanishingly rare.

• Regional survival implies zone survival. By default, a regional survival goal pro‐•
tects against the loss of any single region or the failure of any two zones.

362 | Chapter 11: Multiregion Deployment

• Just as we need at least three nodes to allow for survivability in a single-region•
cluster, we need three regions to allow for regional survival. With only two
regions, the failure of any one region would make the majority of replicas for
some ranges unavailable.

Locality Rules
Regardless of the survival goal, we can fine-tune the distribution within a table to
optimize access from specific regions.

Tables in the database may have locality rules that determine how their data will be
distributed:

• A global table will be optimized for low-latency reads from any region.•
• A regional table will be optimized for low-latency reads and writes from a single•

region.
• A regional by row table will have specific rows optimized for low-latency reads•

and writes for a region. Different rows in the table can be assigned to specific
regions.

With a global table, replicas for all ranges within the table will exist in each region.
This ensures that read time is optimized but creates the highest overhead for writes
because all regions must coordinate on a write request. Global tables are suitable for
relatively static lookup tables whose data is relevant across all regions. A product table
might be a relevant example—product information is often shared across regions,
and not subject to frequent updates; therefore, performance is optimized if each
region has a complete copy of the product table. The downside is that writes to the
product table will require participation from all regions and therefore be relatively
slow.

With a regional table, as much replica information as possible (subject to failure con‐
figuration) for all ranges in the table is located in a single region. This makes sense
either if that region is way more important to the business than other regions or if
the data is particularly relevant to that region. For instance, if in an internationalized
application error codes for each language were located in separate tables, then it
might make sense to locate these in particular regions (though this, of course, would
rekindle the age-old debate on where English should reside). Note that REGIONAL BY
TABLE IN PRIMARY REGION is the default configuration.

Multiregion Concepts | 363

A regional by row table locates the replicas for specific rows in specific regions. A
hidden column (crdb_region) in each row determines where the row will reside.
This column can be populated directly by the application or can be derived from
other information. For example, in a users table, we could assign rows to the US
region if their country code was “USA,” “Canada,” or any country in North or South
America. Regional by row is a very powerful way of moving data close to the regions
in which it is required.

Now, if you’re very alert, you might be wondering how regional survivability interacts
with these table region settings. If we’re in regional survival mode, we have to have
replicas in other regions, so then how does this regional setting work? The answer
is that CockroachDB compromises between the two settings. For a regional table in
region survival mode, two voting replicas and the leaseholder for the entire table or
the ranges in question will be located in the region, while the other voting replicas
will be located in other regions. The end result is a slight advantage in performance
for the “home” region.

In essence, there are three types of tables in a CockroachDB cluster, listed in decreas‐
ing order of survivability and increasing order of performance:

• GLOBAL•
• REGIONAL SURVIVE REGION•
• REGIONAL SURVIVE ZONE•

The reason it’s presented as two separate settings has to do with which combinations
are sensible and how database and table-level settings interact. If there are any
SURVIVE ZONE tables in your database, your application is probably going to break in
a regional failure (unless you’re very careful about which tables you use and when),
so mixing REGIONAL SURVIVE ZONE and REGIONAL SURVIVE REGION tables in one DB
doesn’t make a lot of sense (why pay the performance cost of SURVIVE REGION for
some tables if you’re still going to have downtime in a region failure?). That’s why the
survival goals are a database-level setting. On the other hand, it does make sense to
have mixtures of global and regional tables, so that’s a table-level setting.

Reads from regional or regional by row tables will be slower by default from out‐
side the region concerned. However, low-latency “stale” reads can be performed by
using AS OF SYSTEM TIME queries (aka follower reads (https://cockroa.ch/3TCQVPg)).
These queries can take advantage of nonvoting replicas that are located in each
nonprimary region. These nonvoting replicas aren’t involved in transaction commit
processing, so, therefore, they may be slightly out-of-date.

364 | Chapter 11: Multiregion Deployment

https://cockroa.ch/3TCQVPg

1 You can get a one-month free trial (https://cockroa.ch/3nXObwe) of a nine-node CockroachDB cluster across
three regions.

Planning Your Multiregion Deployment
Hopefully, we now have enough background on multiregion deployments to talk
sensibly about how they can be used in practice.

The default configuration—in which all tables are regional tables housed in the
default region and in which only zone failures are survivable—might be a useful
starting point, but it’s unlikely to be the optimal configuration.

If your primary goal is high performance in all geographies, then you are probably
going to be motivated toward zone survival. In this scenario, carefully determining
your table locality settings will make a big difference. Tables that have “global”
relevance and are read-intensive should probably be set to global. Tables that contain
regional-specific data should probably become regional by row. Only if a table is
specific to a region—such as a language-specific table—should it be left as regional.

If your primary goal is high availability, then you’re probably going to need regional
survival. Table localities are less important in this scenario for write performance
because writes are distributed across multiple regions by default. However, you will
still see advantages in configuring global, regional, and regional by row settings
for selected tables for read performance and can also distribute the workload more
evenly across your cluster.

Deploying in Multiregion
Let’s put theory into practice by configuring a highly available multiregion database.
We’ll use CockroachDB’s own movr sample database, which is designed to illustrate
multiregional principles.

You can replicate these commands using a free trial of CockroachDB Cloud using
any of the available plans.1 The cluster configuration for this example is shown in
Figure 11-4.

Once the cluster is created, you’ll want to initialize the movr schema with the follow‐
ing command:

cockroach workload init movr <url>

Deploying in Multiregion | 365

https://cockroa.ch/3nXObwe

Figure 11-4. CockroachDB nine-node regional cluster setup

Alternatively, you can run a local demo system that simulates a nine-node cluster
with this command:

cockroach demo movr init \
--nodes=9 \
--demo-locality=region=gcp-us-east1,az=gcp-us-east1a:\
region=gcp-us-east1,az=gcp-us-east1b:\
region=gcp-us-east1,az=gcp-us-east1c:\
region=gcp-us-west1,az=us-west-1a:\
region=gcp-us-west1,az=us-west-1b:\
region=gcp-us-west1,az=gcp-us-west1c:\
region=gcp-europe-west1,az=gcp-europe-west1a:\
region=gcp-europe-west1,az=gcp-europe-west1b:\
region=gcp-europe-west1,az=gcp-europe-west1c

366 | Chapter 11: Multiregion Deployment

There’s no need to initialize the movr database with the demo cluster.

If all is well, SHOW REGIONS should reveal the three regions and nine availability zones:

movr> show regions;
 region | zones
-------------------+---
 gcp-europe-west1 | {gcp-europe-west1a,gcp-europe-west1b,gcp-europe-west1c}
 gcp-us-east1 | {gcp-us-east1a,gcp-us-east1b,gcp-us-east1c}
 gcp-us-west1 | {gcp-us-west1c,us-west-1a,us-west-1b}

By default, the tables in movr will be in the default replication zone, which is defined
with three replicas:

/movr> \set display_format=records;
/movr> SELECT raw_config_sql FROM crdb_internal.zones
 WHERE target='RANGE default';
-[RECORD 1]
raw_config_sql | ALTER RANGE default CONFIGURE ZONE USING+
 | range_min_bytes = 134217728,+
 | range_max_bytes = 536870912,+
 | gc.ttlseconds = 90000,+
 | num_replicas = 3,+
 | constraints = '[]',+
 | lease_preferences = '[]'

If we examine a range from a table in movr, we’ll see that it is indeed replicated over
three nodes with one replica in each region:

/movr> \set display_format=records;
/movr> SHOW RANGE FROM INDEX users@users_pkey
FOR ROW ('amsterdam','ae147ae1-47ae-4800-8000-000000000022')
;

-[RECORD 1]
start_key | NULL
end_key | /"amsterdam"/"\xb333333@\x00\x80\...\x00#"
range_id | 37
lease_holder | 5
lease_holder_locality | region=gcp-us-west1,az=us-west-1b
replicas | {1,5,9}
replica_localities | {"region=gcp-us-east1,az=gcp-us-east1a",
 "region=gcp-us-west1,az=us-west-1b",
 "region=gcp-europe-west1,az=gcp-europe-west1c"}

Note that you have to provide a valid primary KV for a user in the preceding
command. The UUID in the example may not exist in your database.

Deploying in Multiregion | 367

Converting to a Multiregion Database
To get started in converting movr to a multiregion database, we assign a primary
region and associate the nonprimary regions with the database:

/movr> ALTER DATABASE movr SET PRIMARY REGION "gcp-us-east1";
ALTER DATABASE PRIMARY REGION

/movr> ALTER DATABASE movr ADD REGION "gcp-europe-west1";
ALTER DATABASE ADD REGION

/movr> ALTER DATABASE movr ADD REGION "gcp-us-west1";
ALTER DATABASE ADD REGION

SHOW REGIONS now reveals that movr is associated with each region and with a
primary region of gcp-us-east1:

/movr> \set display_format=records;
/movr> show regions;
-[RECORD 1]
region | gcp-europe-west1
zones | {gcp-europe-west1a,gcp-europe-west1b,gcp-europe-west1c}
database_names | {movr}
primary_region_of | {}
-[RECORD 2]
region | gcp-us-east1
zones | {gcp-us-east1a,gcp-us-east1b,gcp-us-east1c}
database_names | {movr}
primary_region_of | {movr}
-[RECORD 3]
region | gcp-us-west1
zones | {gcp-us-west1c,us-west-1a,us-west-1b}
database_names | {movr}
primary_region_of | {}

We can see that each table in the movr database now is a REGIONAL BY TABLE IN
PRIMARY REGION table:

/movr> SELECT name,locality
 FROM crdb_internal."tables"
 WHERE schema_name='public'
 AND database_name='movr';

 name | locality
-----------------------------+--------------------------------------
 users | REGIONAL BY TABLE IN PRIMARY REGION
 vehicles | REGIONAL BY TABLE IN PRIMARY REGION
 rides | REGIONAL BY TABLE IN PRIMARY REGION
 vehicle_location_histories | REGIONAL BY TABLE IN PRIMARY REGION
 promo_codes | REGIONAL BY TABLE IN PRIMARY REGION
 user_promo_codes | REGIONAL BY TABLE IN PRIMARY REGION

368 | Chapter 11: Multiregion Deployment

As a consequence of distributing movr over three regions, CockroachDB creates a
new replication zone for the movr database, with a replication factor of five:

/movr> \set display_format=records;
/movr> SELECT raw_config_sql FROM crdb_internal.zones
 WHERE target='DATABASE movr';
-[RECORD 1]
raw_config_sql | ALTER DATABASE movr CONFIGURE ZONE USING+
 | num_replicas = 5,+
 | num_voters = 3,+
 | constraints = '{+region=gcp-europe-west1: 1,
+region=gcp-us-east1: 1, +region=gcp-us-west1: 1}',+
 | voter_constraints = '[+region=gcp-us-east1]',+
 | lease_preferences = '[[+region=gcp-us-east1]]'

Note the constraints on replication—while there should be five replicas in total, just
three of these nodes should be voting nodes, and those nodes should be restricted to
the primary region (region=gcp-us-east1). This is the configuration for a REGIONAL
BY TABLE IN PRIMARY REGION table—by default, the voting nodes should be located
in the primary region so that consensus can be reached without having to consult
other regions synchronously.

While easy to perform, the conversion of a single-region cluster
into a multiregion cluster requires planning and testing. The pro‐
cess will involve data movement and leaseholder rebalancing, both
of which can increase latency, network traffic, and disk IOPS dur‐
ing the conversion process.

Configuring Regional by Row
The nature of MovR is that most transactions are restricted to a single region. We
don’t normally take ride shares from the East of the US to the West and hardly ever
take a MovR car from Europe to the US! Therefore, we probably want the transaction
tables to be REGIONAL BY ROW rather than REGIONAL BY TABLE IN PRIMARY REGION.

Let’s set it up. For a REGIONAL BY ROW table, CockroachDB expects to find a hidden
CRDB_REGION column that maps to one of the regions assigned to the database. We
can alter the application so that it inserts an appropriate value into the row when
it is created, or we could use a computed column. Here we define such a computed
crdb_internal_region column for the users table:

/movr> ALTER TABLE users ADD COLUMN crdb_region crdb_internal_region AS (
 CASE
 WHEN city IN ('new york', 'boston', 'washington dc') THEN 'gcp-us-east1'
 WHEN city IN ('san francisco', 'seattle', 'los angeles') THEN 'gcp-us-west1'
 WHEN city IN ('amsterdam', 'paris', 'rome') THEN 'gcp-europe-west1'
 ELSE 'gcp-us-east1'
 END

Deploying in Multiregion | 369

) STORED;
ALTER TABLE

We can see that the column is mapping correctly:

/movr> SELECT DISTINCT city,crdb_region FROM users;
 city | crdb_region
----------------+-------------------
 boston | gcp-us-east1
 new york | gcp-us-east1
 rome | gcp-europe-west1
 amsterdam | gcp-europe-west1
 los angeles | gcp-us-west1
 paris | gcp-europe-west1
 san francisco | gcp-us-west1
 seattle | gcp-us-west1
 washington dc | gcp-us-east1

Now that the CRDB_REGION column is defined, we can set the table LOCALITY to
REGIONAL BY ROW, after first making the column NOT NULL:

/movr> ALTER TABLE users ALTER COLUMN crdb_region SET NOT NULL;
ALTER TABLE

/movr> ALTER TABLE users SET LOCALITY REGIONAL BY ROW;
NOTICE: LOCALITY changes will be finalized asynchronously;
further schema changes on this table may be restricted until the job completes
ALTER TABLE SET LOCALITY

The shift to REGIONAL BY ROW is implemented by a set of background jobs. Here we
can see that the core jobs have been completed, and a garbage collection is still in
progress:

/movr> \set display_format=records;
/movr> SELECT job_type,description,status
 FROM [show jobs]
 WHERE description LIKE '%REGIONAL%';

-[RECORD 1]
job_type | SCHEMA CHANGE
description | ALTER TABLE movr.public.users SET LOCALITY REGIONAL BY ROW
status | succeeded
-[RECORD 2]
job_type | SCHEMA CHANGE
description | CLEANUP JOB for 'ALTER TABLE movr.public.users
 SET LOCALITY REGIONAL BY ROW'
status | succeeded
-[RECORD 3]
job_type | SCHEMA CHANGE GC
description | GC for CLEANUP JOB for 'ALTER TABLE movr.public.users
 SET LOCALITY REGIONAL BY ROW'
status | running

370 | Chapter 11: Multiregion Deployment

Under the hood, the primary index for the users table now includes the CRDB_REGION
column:

/movr> \set display_format=table;
SELECT DISTINCT index_name,column_Name
 FROM crdb_internal.index_columns
 WHERE descriptor_name='users';

 index_name | column_name
-------------+--------------
 primary | crdb_region
 primary | city
 primary | id

Let’s look at the distribution of ranges for a row in Amsterdam:

/movr> set display_format=records;

/movr> SHOW RANGE FROM INDEX users@users_pkey FOR ROW
('gcp-europe-west1','amsterdam','ae147ae1-47ae-4800-8000-000000000022');

-[RECORD 1]
start_key | /"@"
end_key | /"@"/PrefixEnd
range_id | 98
lease_holder | 8
lease_holder_locality | region=gcp-europe-west1,az=gcp-europe-west1b
replicas | {3,6,7,8,9}
replica_localities | {"region=gcp-us-east1,az=gcp-us-east1c",
"region=gcp-us-west1,az=gcp-us-west1c","region=gcp-europe-west1,
az=gcp-europe-west1a","region=gcp-europe-west1,az=gcp-europe-west1b",
"region=gcp-europe-west1,az=gcp-europe-west1c"}

We can see that there are three replicas in Europe and one replica each in the other
two zones. This maps to the zone survival goal—we can sustain a failure of any one
node in any region, but should the entire gcp-Europe-west1 region fail, then the
table would be unavailable. Compare that to a row for a New York user:

/movr> \set display_format=records;

/movr> SHOW RANGE FROM INDEX users@users_pkey
FOR ROW ('gcp-us-east1','new york','00000000-0000-4000-8000-000000000000');
-[RECORD 1]
start_key | /"\x80"
end_key | /"\x80"/PrefixEnd
range_id | 100
lease_holder | 1
lease_holder_locality | region=gcp-us-east1,az=gcp-us-east1a
replicas | {1,2,3,4,8}
replica_localities | {"region=gcp-us-east1,az=gcp-us-east1a",
"region=gcp-us-east1,az=gcp-us-east1b","region=gcp-us-east1,
az=gcp-us-east1c","region=gcp-us-west1,az=us-west-1a",
"region=gcp-europe-west1,az=gcp-europe-west1b"}

Deploying in Multiregion | 371

The New York row has three copies in the gcp-us-east1 region and one copy in each
of the other regions.

We should repeat the process of assigning CRDB_REGION and setting REGIONAL BY ROW
locality for the other transactional tables that are region-specific: RIDES, VEHICLES,
VEHICLE_LOCATION_HISTORIES, and USER_PROMO_CODES.

The PROMO_CODES table is not region-specific—promo codes are equally applicable in
every location. We should probably make this a GLOBAL table since it is read from
every region and not subject to high transaction rates:

/movr> ALTER TABLE promo_codes SET LOCALITY GLOBAL;
ALTER TABLE SET LOCALITY

Our final table locality configuration would look like this:

/movr> SELECT name,locality
 FROM crdb_internal."tables"
 WHERE schema_name='public'
 AND database_name='movr';
 name | locality
-----------------------------+------------------
 users | REGIONAL BY ROW
 vehicles | REGIONAL BY ROW
 rides | REGIONAL BY ROW
 vehicle_location_histories | REGIONAL BY ROW
 promo_codes | GLOBAL
 user_promo_codes | REGIONAL BY ROW

Setting Regional Survival Goal
What we’ve done so far enhances regional performance by moving rows close to the
regions in which they are accessed and modified. However, our high-availability con‐
figuration may actually have decreased. Prior to the REGIONAL BY ROW configuration,
we could have survived a nonprimary region failure. We are now vulnerable to failure
of any region because each region has the majority of replicas for at least some ranges.

To achieve global high availability, we need to move to a regional survival goal. We
can do that with a single command:

/movr> ALTER DATABASE movr SURVIVE REGION FAILURE;

ALTER DATABASE SURVIVE

As with other reconfigurations, this kicks off a background job that oversees the
necessary redistribution of ranges:

/movr> \set display_format=records;
/movr>
SELECT description,status
 FROM [show jobs]

372 | Chapter 11: Multiregion Deployment

 WHERE description like '%SURVIVE%';

-[RECORD 1]
description | ALTER DATABASE movr SURVIVE REGION FAILURE
status | succeeded

To see what exactly has changed, let’s look at the distribution of ranges for an
Amsterdam row. You might recall that previously this row had three replicas in the
EU region and one replica in each of the US regions. Let’s see what it looks like now:

movr> \set display_format=records;
/movr>
SHOW RANGE FROM INDEX users@users_pkey FOR ROW
('gcp-europe-west1','amsterdam','ae147ae1-47ae-4800-8000-000000000022');

-[RECORD 1]
start_key | /"@"
end_key | /"@"/PrefixEnd
range_id | 98
lease_holder | 8
lease_holder_locality | region=gcp-europe-west1,az=gcp-europe-west1b
replicas | {2,4,7,8,9}
replica_localities | {"region=gcp-us-east1,az=gcp-us-east1b",
"region=gcp-us-west1,az=us-west-1a","region=gcp-europe-west1,
az=gcp-europe-west1a","region=gcp-europe-west1,az=gcp-europe-west1b",
"region=gcp-europe-west1,az=gcp-europe-west1c"}

Now we have replicas across gcp-europe-west1, gcp-us-west1, and gcp-us-east1.
If any region fails, there will still be a majority of replicas available—hence we can
survive a region failure. The trade-off in the event of a regional outage is write
performance; since only a minority of replicas exist in the primary region, we cannot
achieve Raft consensus without another region receiving the write.

Super Regions
Super regions are groups of nonoverlapping CockroachDB regions that define repli‐
cation boundaries. They are particularly suited to use cases needing compliance with
data domiciling requirements that restrict the storage of data outside of a geograph‐
ical or political zone. For instance, the EU’s General Data Protection Regulation
(GDPR) might require that certain data be hosted only within the EU.

Let’s use super regions to restrict the replication of data in the previously created
demo cluster.

To recap, this is a cluster running across three simulated regions:

SELECT region, zones FROM [SHOW REGIONS];

 region | zones
-------------------+--
 gcp-us-east1 | {gcp-us-east1a,gcp-us-east1b,gcp-us-east1c}

Deploying in Multiregion | 373

 gcp-us-west1 | {gcp-us-west1c,us-west-1a,us-west-1b}
 gcp-europe-west1 | {gcp-europe-west1a,gcp-europe-west1b,gcp-europe-west1c}

Next, we’ll enable super regions and introduce two of them to restrict US data to the
US and EU data to the EU:

SET enable_super_regions = 'on';

ALTER DATABASE movr ADD SUPER REGION us VALUES "gcp-us-east1", "gcp-us-west1";
ALTER DATABASE movr ADD SUPER REGION eu VALUES "gcp-europe-west1";

Once applied, CockroachDB will ensure that replicas for US data do not leave the
“gcp-us-east1” and “gcp-us-west1” regions, while EU data does not leave the “gcp-
europe-west1” region.

It’s important to consider that, from a resilience perspective, our data is now being
replicated across fewer regions. If you need to pin data to geographic boundaries and
survive regional cloud outages, you’ll need to ensure there are at least three regions in
a super region.

For more information, consult the CockroachDB documentation (https://cockroa.ch/
3zd0b5E).

Summary
In this chapter, we’ve outlined the theory and practice of CockroachDB multiregion
deployments.

Multiregion deployments allow a CockroachDB cluster to span multiple geographies
and to potentially survive the failure of an entire region. Multiregion configurations
also allow you to fine-tune the distribution of data such that data resides where it is
most likely to be used, thus reducing latency both for reads and writes.

There are some trade-offs between latency and availability. Most critically, where
regional survival is required, some increase in write latency at least will occur, because
multiple regions will have to participate in transaction consensus.

Highly available CockroachDB configurations, including the multiregion options,
protect against a large subset of possible failure scenarios. However, there are situa‐
tions in which even the most robust distributed database may need to be recovered
from a backup—in the next chapter, we’ll provide an overview of the CockroachDB
backup and recovery facilities.

374 | Chapter 11: Multiregion Deployment

https://cockroa.ch/3zd0b5E

CHAPTER 12

Backup and Disaster Recovery

High availability is the only option for most modern applications. In previous chap‐
ters, we’ve seen how to configure a distributed CockroachDB cluster that can survive
all but the most extreme circumstances.

Nevertheless, even a cluster with the most resilient replication scheme may encounter
a circumstance from which it cannot recover. There might be a coordinated failure of
multiple data centers—as a result of a cyber attack, for instance—that renders all the
data within the cluster irrecoverable.

There are also circumstances in which the cluster infrastructure remains intact, but
the data within it becomes corrupted. For instance, a database administrator (DBA)
might inadvertently modify production data thinking that they are working on the
development system, a ransomware attack might attempt to wipe all the data, or an
application bug might subtly corrupt data over time.

While CockroachDB has a number of features that can assist you when recovering
from data corruption (primarily based on the AS OF SYSTEM TIME clause), backups
provide the ultimate insurance policy against loss of or corruption of data in your
databases.

Backups also provide some ability to recover the state of data in the relatively dis‐
tant past. This might be required for regulatory purposes or in the event that data
becomes so logically corrupted that a “do-over” from some point in time is required.

375

Backup Versus High Availability
In distributed databases such as CockroachDB, backup and high-availability patterns
differ significantly from those of a monolithic database such as Oracle or SQL Server.
In a monolithic database such as Oracle, replication and backup are both based on
a write-ahead transaction log (called the redo log in Oracle). This log is the first
recipient of durable commit records and is used both as the source of replication to
standby databases (for high-availability purposes) and to “roll forward” the database
from a static backup in case of a total failure.

In CockroachDB, the Raft logs serve the same logical function as the transaction
logs of the monolithic database, but there is no single log to base recovery on and,
consequently, the procedures are a little different. In short, the dominant pattern for
HA and disaster recovery in CockroachDB involves:

• Using redundant distributed copies of data to maintain availability in the event of•
predictable infrastructure failure.

• Taking periodic backups of the database to protect against disasters that over‐•
whelm the replication.

These two techniques are used in combination to provide high availability for fore‐
seeable infrastructure failure together with a fallback solution should the entire infra‐
structure fail or the database becomes logically corrupt.

Backups
CockroachDB backups are the primary means of creating offline copies of data that
can be rapidly restored in the event of a disaster or data corruption issue.

Backups can be made of the entire cluster or of individual databases and tables. A
backup can include not only the current state of the data but also all history known
to the database at the time of the backup (by default, a 4-hour window of data
configured by gc.ttlseconds (https://cockroa.ch/3ZBbC1U)).

Backups may be automatically executed on a schedule and may include both incre‐
mental and full backups. They can be taken using the AS OF SYSTEM TIME clause,
which uses historical data to create the backups. This reduces performance overhead
and transactional conflicts but does mean that the backup will not include all com‐
mitted transactions at its execution time. Backups can also be locality-aware, which
optimizes backups for locality in a multiregion cluster.

376 | Chapter 12: Backup and Disaster Recovery

https://cockroa.ch/3ZBbC1U

Backup and Recovery in CockroachDB Cloud
CockroachDB Cloud automatically performs full backups daily and incremental
backups hourly. You are, of course, welcome to create your own backup jobs, but
for most users, the CockroachDB Cloud defaults will be sufficient.

The CockroachDB Cloud Backups page (https://cockroa.ch/3C7JQRt) has a complete
list of backup jobs and their details.

The BACKUP Command
The BACKUP statement creates full or incremental backups of the data in the entire
cluster, one or more databases, or one or more tables.

The user performing a backup needs read access on all objects being backed up and
write access to the target destination. You’ll also need the USAGE privilege to back up
user-defined schemas or types. For a full backup, you’ll need to be a member of the
admin role. Figure 12-1 shows the syntax of the BACKUP statement.

Figure 12-1. Syntax of the BACKUP command

Backups | 377

https://cockroa.ch/3C7JQRt

Backup Destinations
Backup destinations follow the same format as for file imports, which we introduced
in Chapter 7, and as with other resources, backup and restore locations can be
configured using external connections, preventing database operators from having
to handle sensitive credentials. In short, the backup can be written to cloud storage
destinations, such as S3, Google Cloud Storage, or Azure containers; to CockroachDB
cluster storage (userfile and nodelocal destinations); or to custom HTTP storage
locations.

For instance, the following command generates a backup of the “bank” database to a
nodelocal destination:

/defaultdb> backup database bank into 'nodelocal://1/bank.backup/';
 job_id | status | f_completed | rows | index_entries | bytes
---------------------+-----------+-------------+------+---------------+---------
 694816704807895041 | succeeded | 1 | 1031 | 16 | 239079
(1 row)

Time: 764ms total (execution 727ms / network 36ms)

Nodelocal destinations are still based within cluster storage and are not always
suitable for disaster recovery purposes. If you do back up to a nodelocal location,
you might want to mount the destination on a Network File System (NFS) or other
remote durable filesystem. Also, note that nodelocal locations are not available in
CockroachDB Cloud.

In the next example, a backup for the Bank database is written to a Google Cloud
destination.

Let’s assume we have a Google Cloud Storage auth key stored in a JSON file called
gsc_key.json. We’ll read that file and convert it into a base64 string:

cat gsc_key.json | base64
ewogICJ0eXBlIjogInNlcnZpY2VfYWNj...

Then create the backup, making use of the encoded key:

BACKUP DATABASE bank
INTO 'gs://ghcrdb/bank.backup?AUTH=specified&CREDENTIALS=eplgICJ...';

 job_id | status | fraction_c| rows | index_entries | bytes
---------------------+-----------+-----------+------+---------------+---------
 694812435375915009 | succeeded | 1 | 1000 | 0 | 114634
(1 row)

Time: 4.550s total (execution 4.549s / network 0.000s)

For more information about configuring cloud storage destinations, see the
CockroachDB documentation (https://cockroa.ch/3J7LQXf).

378 | Chapter 12: Backup and Disaster Recovery

https://cockroa.ch/3J7LQXf

Full Backup
A full backup copies all data and all metadata (such as permissions and users) to the
destination. It is sufficient to simply specify the destination of the backup:

/defaultdb> BACKUP INTO 'gs://ghcrdb/full.backup' ;

 job_id | status | rows | index_entries | bytes
---------------------+-----------+---------+---------------+-----------
 694818421848604673 | succeeded | 214148 | 401210 | 63225717
(1 row)

Time: 14.772s total (execution 14.758s / network 0.014s)

Note that full-cluster backups can be restored only into a brand-new cluster in a
pristine state—you can’t simply apply it over the top of a damaged server. So you
will want to make sure that your recovery procedure includes the initialization of the
cluster.

Table- and Database-Level Backups
Table- and database-level backups use an intuitive syntax. Here we back up select
tables and then the whole database:

/defaultdb>
BACKUP TABLE movr.rides, movr.users
INTO 'nodelocal://1/movr.rides.backup/';
 job_id | status | rows | index_entries | bytes
---------------------+-----------+--------+---------------+-----------
 694832106547740673 | succeeded | 210128 | 400130 | 62401452
(1 row)

Time: 875ms total (execution 868ms / network 7ms)

/defaultdb>
BACKUP DATABASE movr INTO 'nodelocal://1/movr.full.backup/';
 job_id | status | rows | index_entries | bytes
---------------------+-----------+---------+---------------+-----------
 694832216177213441 | succeeded | 214887 | 401149 | 63027704
(1 row)

Time: 943ms total (execution 938ms / network 5ms)

Unlike a full backup, table- or database-level backups do not include metadata. In
particular, users and permissions will not be included within the backup. Therefore,
if you’re restoring a table or database backup, you will need to maintain scripts
to restore the appropriate user and permission structures. You will also need to
separately restore system settings, schedules, and any other aspects of the system
configuration that you want to be preserved.

Backups | 379

For a table-level backup, it’s possible that there will be dependent objects—foreign key
references, for example—that will be required to completely restore the table. Some
of these dependencies can be ignored during a restore by setting the appropriate
options.

Incremental Backups
Incremental backups include only the changes since the last full backup. They are
denoted by the use of the LATEST IN clause. For instance, if we have a full backup
created as follows:

/defaultdb> BACKUP INTO 'nodelocal://1/fullClusterBackup/';

 job_id | status | rows | index_entries | bytes
---------------------+-----------+---------+---------------+-----------
 694822827753701377 | succeeded | 215369 | 401314 | 63320592
(1 row)

Then by specifying the LATEST IN clause and the same location, we create an incre‐
mental backup:

/defaultdb>
BACKUP INTO LATEST IN 'nodelocal://1/fullClusterBackup/';

 job_id | status | rows | index_entries | bytes
---------------------+-----------+-------+---------------+--------
 694823197287415809 | succeeded | 681 | 63 | 57054
(1 row)

Time: 382ms total (execution 377ms / network 5ms)

CockroachDB allows for up to 400 incremental backups to be created between
full backups, and Cockroach Labs recommends taking incremental backups
every 10 minutes; your RPO may dictate a different frequency. Refer to the
CockroachDB Documentation (https://cockroa.ch/3XT1Tmp) for more information
and recommendations.

AS OF SYSTEM TIME Backup
By default, the backup will be consistent as of the time the backup command was
executed. However, you can use the AS OF SYSTEM TIME clause to take a backup
using “time travel.” The backup copies data current as of the specified time using the
MVCC records, which are (by default) kept for four hours or for the value of the
replication zone parameter gc.ttlseconds.

Here we take a backup as of one hour ago:

/defaultdb>
BACKUP INTO 'nodelocal://1/onehourago.backup/'

380 | Chapter 12: Backup and Disaster Recovery

https://cockroa.ch/3XT1Tmp

AS OF SYSTEM TIME '-1h';

 job_id | status | rows | index_entries | bytes
---------------------+-----------+--------+---------------+-----------
 694821661481992193 | succeeded | 58057 | 95076 | 15687164
(1 row)

Time: 641ms total (execution 638ms / network 3ms)

These time-travel backups represent the fulfillment of an age-old DBA dream—to be
able to take a backup of the database after screwing it up by doing something stupid!
So if we were to drop an important table by mistake in production (thinking it was
development), we could quickly take a backup of the database as it was before our
mistake.

It is also best practice to use the AS OF SYSTEM TIME clause with a small offset
(–10 s is recommended) to reduce overhead and conflicts during the backup process.
Without AS OF SYSTEM TIME, the backup will attempt to read the current state of
all ranges, which may involve blocking on uncommitted transactions or retrying
reads when necessary. By using AS OF SYSTEM TIME, these conflicts are eliminated,
resulting in a faster backup with less impact on the production database.

Encrypted Backups
To provide an extra level of security to your backups, CockroachDB allows you to
encrypt them using a key management service (KMS) like AWS KMS, GCP KMS, and
Azure Key Vault, or by using a passphrase. The ALTER BACKUP command can also be
used to retrospectively encrypt a backup.

The following is an example of how to take and restore an encrypted backup to an S3
bucket, harnessing AWS KMS:

BACKUP INTO 's3://your_bucket?...'
 WITH kms = 'aws:///your_key?...';

RESTORE FROM LATEST IN 's3://your_bucket?...'
 WITH kms = 'aws:///your_key?...';

See the CockroachDB documentation (https://cockroa.ch/47DKtgX) for examples of
taking and restoring encrypted GCP and Azure backups and for backups involving
passphrases.

WITH REVISION HISTORY
The WITH REVISION HISTORY clause adds all known data history into the backup.

As we’ve seen numerous times in this book, CockroachDB keeps changes to data
for the duration of the replication zone gc.ttlseconds configuration variable. WITH

Backups | 381

https://cockroa.ch/47DKtgX

REVISION HISTORY causes this information to be included in the backup. The
backup will, of course, be much larger, but you’ll have the option of performing a
point-in-time RESTORE option that might be useful if you need to recover the database
to a point in time.

SHOW BACKUP
The SHOW BACKUP command lists backups and their attributes. Its syntax is shown in
Figure 12-2.

Figure 12-2. Syntax of the SHOW BACKUP command

In its simplest form, SHOW BACKUPS IN location lists the backups that have been
written to a particular destination. For instance, for the full and incremental backup
that we took earlier, we could issue this command to find the backup ID:

/defaultdb> SHOW BACKUPS IN
'nodelocal://1/fullClusterBackup/';
 path

 2021/09/20-045139.32

We can now list properties of that backup:

/defaultdb> \set display_format=records
/defaultdb> SHOW BACKUP '2021/09/20-045139.32'
IN 'nodelocal://1/fullClusterBackup/';

-[RECORD 1]
database_name | NULL
parent_schema_name | NULL
object_name | system
object_type | database
start_time | NULL
end_time | 2021-09-20 04:51:39.325918+00:00:00
size_bytes | NULL
rows | NULL

382 | Chapter 12: Backup and Disaster Recovery

is_full_cluster | true
…
-[RECORD 72]
database_name | bank
parent_schema_name | public
object_name | backup_upload_payload
object_type | table
start_time | 2021-09-20 04:53:32.054603+00:00:00
end_time | 2021-09-20 04:59:38.075636+00:00:00
size_bytes | 0
rows | 0
is_full_cluster | true

Time: 59ms total (execution 45ms / network 13ms)

Although the output is verbose, we can manipulate it using SQL. So, for instance, to
see the start and end times of each full and incremental backup, we could do this:

/defaultdb>
SELECT distinct start_time,end_time
 FROM [SHOW BACKUP '2021/09/20-045139.32'
 IN 'nodelocal://1/fullClusterBackup/']
;
 start_time | end_time
--------------------------------------+--------------------------------------
 NULL | 2021-09-20 04:51:39.325918+00:00:00
 2021-09-20 04:51:39.325918+00:00:00 | 2021-09-20 04:53:32.054603+00:00:00
 2021-09-20 04:53:32.054603+00:00:00 | 2021-09-20 04:59:38.075636+00:00:00
(3 rows)

We see one full backup and two incremental backups in the backup container.

Managing Backup Jobs
By default, BACKUP commands block until the backup is complete. If the WITH
DETACHED clause is added, then the backup proceeds in the background. For instance:

/defaultdb>
BACKUP INTO 'gs://ghcrdb/myFullBackup/'
WITH DETACHED;
 job_id

 694835817555918849
(1 row)

Time: 2.148s total (execution 2.088s / network 0.060s)

The SHOW JOB, CANCEL JOB, and PAUSE JOB commands can help manage the backup:

/defaultdb> \set display_format=records;
/defaultdb> SHOW JOB 694835817555918849
;

Backups | 383

-[RECORD 1]
job_id | 694835817555918849
job_type | BACKUP
description | BACKUP INTO '/2021/09/20-055741.77'
 IN 'gs://ghcrdb/myFullBackup/' WITH detached
statement |
user_name | root
status | succeeded
running_status | NULL
created | 2021-09-20 05:57:41.779563+00:00:00
started | 2021-09-20 05:57:50.462355+00:00:00
finished | 2021-09-20 05:58:04.257721+00:00:00
modified | 2021-09-20 05:58:04.177931+00:00:00
fraction_completed | 1
error |
coordinator_id | 0

Scheduling Backups
The CREATE SCHEDULE FOR BACKUP command allows you to create a schedule for
periodic backups. Figure 12-3 shows the syntax of the CREATE SCHEDULE FOR BACKUP
command.

Figure 12-3. Syntax of the CREATE SCHEDULE FOR BACKUP command

Most of these options are the same as for the BACKUP command itself as well as
advanced options that you can read about in the CockroachDB documentation
(https://cockroa.ch/3NLrqqs).

The RECURRING arguments control the scheduling of the backup. RECURRING uses the
familiar crontab format that has been in use since the 1970s. A crontab expression
consists of five fields separated by white space. These fields correspond to:

• Minute in the hour•
• Hour in the day (1 to 24)•

384 | Chapter 12: Backup and Disaster Recovery

https://cockroa.ch/3NLrqqs

• Day of month•
• Month of year (1 to 12 or JAN to DEC)•
• Day of the week (0 to 6 or SUN to SAT)•

Asterisks can be used to indicate all ranges for the field, dashes (-) can be used
to indicate ranges, and comma-separated lists might specify multiple entries. A cron‐
tab of:

5,35 0-6 1 * *

would fire at 5 minutes and 35 minutes past the hour, from midnight to 6 A.M. on the
first day of every month. CockroachDB also accepts the nonstandard cron shortcuts
@yearly, @annually, @monthly, @weekly, @daily, and @hourly. For more options, see
the crontab manual page (https://cockroa.ch/3j1BOMC).

The following example takes a full backup and stores it in a Google Cloud Storage
bucket every morning at 1:05 A.M.:

/movr> \set display_format=records;

/movr>
 CREATE SCHEDULE mydailyfullbackup
 FOR BACKUP INTO 'gs://ghcrdb/dailybackup'
 WITH revision_history
 RECURRING '5 1 * * *' FULL BACKUP ALWAYS;
-[RECORD 1]
schedule_id | 695961487290531841
label | mydailyfullbackup
status | ACTIVE
first_run | 2021-09-25 01:05:00+00:00:00
schedule | 5 1 * * *
backup_stmt | BACKUP INTO 'gs://ghcrdb/dailybackup'
WITH revision_history, detached

This example takes an incremental backup every hour at 15 minutes past the hour
and a daily full backup:

/movr> \set display_format=records;

/movr> CREATE SCHEDULE myhourlybackup
 FOR BACKUP INTO 'gs://ghcrdb/hourly'
 WITH revision_history
 RECURRING '15 * * * *' FULL BACKUP '@daily';
-[RECORD 1]
schedule_id | 695961540785733633
label | myhourlybackup
status | PAUSED: Waiting for initial backup to complete
first_run | NULL
schedule | 15 * * * *
backup_stmt | BACKUP INTO 'gs://ghcrdb/hourly'
WITH revision_history, detached

Backups | 385

https://cockroa.ch/3j1BOMC

-[RECORD 2]
schedule_id | 695961540796055553
label | myhourlybackup
status | ACTIVE
first_run | 2021-09-25 00:00:00+00:00:00
schedule | @daily
backup_stmt | BACKUP INTO 'gs://ghcrdb/hourly'
WITH revision_history, detached

Note that this command created two schedules—one for the hourly incremental
backups and one for the daily full backup.

We can view schedules using the SHOW SCHEDULES command:

/movr> \set display_format=records;

/movr> SELECT * FROM [SHOW SCHEDULES] WHERE label='myhourlybackup';
-[RECORD 1]
id | 695961540785733633
label | myhourlybackup
schedule_status | PAUSED
next_run | NULL
state | Waiting for initial backup to complete
recurrence | 15 * * * *
jobsrunning | 0
owner | demo
created | 2021-09-24 05:23:24.936047+00:00:00
command | {"backup_statement": "BACKUP INTO LATEST
 IN 'gs://ghcrdb/hourly' WITH revision_history, detached",
 "backup_type": 1}
-[RECORD 2]
id | 695961540796055553
label | myhourlybackup
schedule_status | ACTIVE
next_run | 2021-09-25 00:00:00+00:00:00
state | NULL
recurrence | @daily
jobsrunning | 0
owner | demo
created | 2021-09-24 05:23:24.936047+00:00:00
command | {"backup_statement": "BACKUP INTO 'gs://ghcrdb/hourly'
WITH revision_history, detached", "unpause_on_success": 695961540785733633}

We can manage schedules using the SHOW SCHEDULES, PAUSE SCHEDULE, RESUME
SCHEDULE, and DROP SCHEDULE commands.

386 | Chapter 12: Backup and Disaster Recovery

Locality-Aware Backups
With locality-aware backups, each node writes its backup files to a specific backup
destination. The idea is that a node in one region will write its backup to a cloud
store in the same region. This will consequently optimize the network traffic and data
transfer costs for the backup.

The following backup command specifies three Google Cloud Storage buckets
assigned to corresponding CockroachDB locality regions. Note that a default bucket
is also assigned to ensure that any ranges not assigned to one of these regions will still
have a destination:

/movr> BACKUP INTO
 ('gs://crddg-us-east?COCKROACH_LOCALITY=default',
 'gs://crddg-us-east?COCKROACH_LOCALITY=region%3Dgcp-us-east1',
 'gs://crddg-us-west?COCKROACH_LOCALITY=region%3Dgcp-us-west1',
 'gs://crddg-eu-west?COCKROACH_LOCALITY=region%3Dgcp-europe-west1'
);
 job_id | status | rows | index_entries | bytes
---------------------+-----------+-------+---------------+---------
 695965008766107649 | succeeded | 2613 | 1063 | 475741
(1 row)

With locality-aware backups, a node’s locality in a self-hosted or
CockroachDB Cloud Advanced cluster will always match the stor‐
age bucket locality. However, CockroachDB can’t guarantee that
ranges will always be backed up to a cloud storage bucket with the
same locality.

Restoring Data
There’s only one thing more important than taking backups—being able to restore
them! The syntax for the restore command is straightforward, and a simple example
is, well, simple. This might make you feel relaxed about the restore procedure. If
so, un-chill out! There is nothing more nerve-wracking than trying to recover a
mission-critical production system in the middle of the night with everyone—abso‐
lutely everyone—breathing down your neck.

You do not want to be doing your first restore procedure in these circumstances.
What you need is to be following an extremely well-documented, foolproof, and
practiced procedure for the recovery. Make sure that you perform disaster recovery
drills at regular intervals and that the procedures are well understood.

Having said all that, it’s true that the CockroachDB restore procedure is relatively
straightforward. Figure 12-4 shows the syntax of the RESTORE command.

Restoring Data | 387

Figure 12-4. Syntax of the RESTORE command

Full cluster restores can be run only by members of the admin role. By default, the
root user belongs to this role.

For all other restores, the user must have write access (CREATE or INSERT) on all
affected objects.

Let’s step through a simplistic example. We create a backup of the entire cluster and
then drop the movr database:

/defaultdb> BACKUP INTO 'gs://ghcrdb/gubuntu1.backup' ;
 job_id | status | rows | index_entries | bytes
---------------------+-----------+---------+---------------+-----------
 694844860424978433 | succeeded | 216047 | 401379 | 63374661
(1 row)

Time: 13.930s total (execution 13.911s / network 0.018s)

/defaultdb> DROP DATABASE movr CASCADE;
DROP DATABASE

Now, to restore, we look at the backups in the cloud store:

/defaultdb> show backups in 'gs://ghcrdb/gubuntu1.backup';

388 | Chapter 12: Backup and Disaster Recovery

 path

 2021/09/20-064056.37
 2021/09/20-064341.66
(2 rows)

We pick the most recent backup and restore the database:

/defaultdb>
RESTORE DATABASE movr FROM '2021/09/20-064056.37'
IN 'gs://ghcrdb/gubuntu1.backup' ;

 job_id | status | rows | index_entries | bytes
---------------------+-----------+---------+---------------+-----------
 694845589288714242 | succeeded | 214887 | 401149 | 63027704
(1 row)

Alternatively, we can specify a fully qualified backup location:

/defaultdb>
RESTORE DATABASE movr
 FROM 'gs://ghcrdb/gubuntu1.backup/2021/09/20-064056.37' ;
 job_id | status | rows | index_entries | bytes
---------------------+-----------+---------+---------------+-----------
 694848192927858689 | succeeded | 214887 | 401149 | 63027704
(1 row)

Simple! The RESTORE command allows restoration of the entire cluster or selected
databases and tables. A few things to note about a RESTORE:

• If a backup was taken WITH REVISION HISTORY, then a restore may use the AS•
OF SYSTEM TIME clause to restore data at a point in time. This might be useful if
the database became corrupted before the backup was initiated, and you need to
restore it to a point in time before the corruption.

• After a restore operation, your data will be restored to a point in time without•
history: AS OF SYSTEM TIME queries cannot access data prior to the restore point.

• RESTORE accepts the WITH DETACHED clause and creates a restore job that can be•
managed with SHOW JOB, CANCEL JOB, and PAUSE JOB commands.

• If an incremental backup is stored in the same location as the full backup, then a•
restore will leverage the incremental backups transparently.

• You may restore tables from one database into another using the INTO_DB option.•
This works only when restoring individual tables, not entire databases.

• RESTORE accepts a variety of options that can be used to fine-tune the restora‐•
tion. For instance, you can ignore various dependencies such as foreign keys or
sequences, or you can change the target database when restoring a table. See the
CockroachDB documentation (https://cockroa.ch/36OE6MP) for more details.

Restoring Data | 389

https://cockroa.ch/36OE6MP

Backups are a lot like home fire insurance—you hope that you never need it—and,
given the high-availability features of CockroachDB, chances are you never will.
However, when you need it, you really need it. The principles of backup and restore
are relatively straightforward, but there are many things that can go wrong in the
real world. Crusty old DBAs are full of horror stories about backup and recovery.
One thing these stories have in common is that the recovery procedure was not
thoroughly tested.

Remember that it’s very likely that a restore operation on a production system will
occur in a high-stress environment and without any chance for preparation. You
should be certain that your backups are safe and sound and that your procedures are
documented and practiced.

Backup Validation
A backup that can’t be restored for any reason is not only useless but dangerous to
have lying around in case you need to restore. You should regularly validate your
backup files to ensure they can be restored at a moment’s notice.

Every CockroachDB product provides three queries (https://cockroa.ch/3XCrpe5) you
can harness to gain confidence in your backup files; in this section, we’ll try each
of them. Let’s take a backup of the movr database before we explore them (note that
regardless of where your backups reside, the experience will be the same; note also
that the output has been simplified for brevity):

BACKUP DATABASE movr INTO 'nodelocal://1/movr.backup/';

 job_id | status | rows | index_entries | bytes
----------------------+-----------+------+---------------+---------
 1006054881836793857 | succeeded | 2570 | 1015 | 461307

If we show the backups for the movr database, CockroachDB will list the files that
comprise each of them:

SHOW BACKUPS IN "nodelocal://1/movr.backup";

 path
 /2024/09/23-121944.53

With this path to hand, the first query is SHOW BACKUP ... WITH check_files,
which checks that all SST and metadata files for a given backup are accessible. The
inclusion of the check_files option means that the query will fail if an issue with
credentials, schemas, or CockroachDB versions is encountered:

SHOW BACKUP "/2024/09/23-121944.53" IN "nodelocal://1/movr.backup"
 WITH check_files;

This query executes quickly and should be run frequently to give you round-the-
clock confidence in your backup files.

390 | Chapter 12: Backup and Disaster Recovery

https://cockroa.ch/3XCrpe5

The next query is RESTORE ... WITH schema_only, which performs a restore of the
schema objects in the movr database without restoring any of its data. This query
reads the backup files, providing a deeper level of validation than the previous option:

-- Validate that a backup can be restored

RESTORE DATABASE movr
FROM "/2024/09/23-121944.53" IN "nodelocal://1/movr.backup"
 WITH new_db_name = movr2,
 schema_only;

 job_id | status | rows | index_entries | bytes
----------------------+-----------+------+---------------+--------
 1006051225540001793 | succeeded | 0 | 0 | 0

The last and deepest level of validation is the RESTORE ... WITH schema_only,
verify_backup_table_data query. This not only restores the schema objects of our
database but will also read every row of backed-up data to verify its checksum. If
you’re following along, be sure to delete the empty movr2 database from the previous
validation query:

RESTORE DATABASE movr
FROM "/2024/09/23-121944.53" IN "nodelocal://1/movr.backup"
 WITH new_db_name = movr2,
 schema_only,
 verify_backup_table_data;

 job_id | status | rows | index_entries | bytes
----------------------+-----------+------+---------------+--------
 1006051403301355521 | succeeded | 2570 | 1015 | 0

The movr2 database will still be empty, but this time notice that the number of rows
read is 2570 rather than 0. This query takes more time to execute than the first and
so shouldn’t be executed as frequently. However, we still recommend that you run it
frequently enough to give you confidence in the integrity of your backup files.

Exporting Data
EXPORT is used to write table data or SQL result sets into CSV files. Although you
could theoretically create a backup regimen around EXPORT and IMPORT (see Chap‐
ter 7), in practice, BACKUP and RESTORE, which allow for scheduled and incremental
backups as well as all the other features we’ve outlined in this chapter, are a far
superior solution for disaster recovery purposes.

EXPORT, however, has the advantage of storing data in a platform-independent format
that can be used to load data into other systems (data warehouses, for instance) or for
long-term archival purposes.

Exporting Data | 391

We looked at EXPORT in detail back in Chapter 7. Please refer to that chapter for more
details.

Disaster Recovery Best Practices
Now that we’re familiar with the various backup and restore commands, let’s review
how best to use the commands in real-world scenarios.

Backup Scheduling and Configuration
There are several considerations that bear on the scheduling and configuration of
backups:

• Backups should be scheduled to minimize the possibility of any data loss.•
• Backups should be scheduled and configured to minimize the time taken to•

restore from the backup, sometimes called mean time to recovery (MTTR).
• Backups should be scheduled and configured to avoid placing undue overhead•

on the live database.

Not all of these motivations are in perfect alignment. Very frequent backups will
reduce the MTTR and the possibility of data loss but will increase the overhead on
the system.

However, the following guidelines are suggested as general-purpose best practices:

• Perform a full backup at least once within each garbage collection window (by•
default, 4 hours). The parameter gc.ttlseconds determines how long data will
be retained before being discarded. In the event of a data corruption issue, you
will always be able to retrieve data up to gc.ttlseconds in the past. You want to
make sure that there is no gap between the last backup and the current garbage
collection window.

• Use the AS OF SYSTEM TIME clause to base the backup of a snapshot of historical•
data rather than on the current state of the database. Without AS OF SYSTEM
TIME, the backup will attempt to read the current state of data ranges and may
need to restart reads if there are unresolved write intents or block if the read
encounters an uncommitted write. By specifying a SYSTEM TIME in the very
recent past (10 seconds is recommended), you avoid these conflicts, which results
in a faster backup with less impact on other sessions.

• Use cloud storage for backup destinations when possible. Directing backups to•
destinations in the same region as your cluster can optimize backup performance
by reducing network latency but raises the risk that an outage might affect both
the cluster and the cloud store. Most cloud stores offer geo-redundant options

392 | Chapter 12: Backup and Disaster Recovery

in which data is replicated to multiple regions—these would be preferred destina‐
tions for important backups.

• Use a combination of full and incremental backups to achieve a balance between•
overhead, frequency, and time to recover. The more frequently an incremental
backup is executed, the lower its overhead (because it is backing up fewer
changes). Therefore, you can issue incremental backups reasonably frequently.
Your data volatility should dictate this, but Cockroach Labs recommends taking
incremental backups every 10 minutes.

• Use the WITH REVISION HISTORY if you want to be able to recover a backup to a•
point in time.

• Use CockroachDB scheduling instead of an external scheduler such as cron. The•
CockroachDB scheduler understands some of the nuances of the CockroachDB
backup system, such as using the AS OF SYSTEM TIME clause to reduce overhead.

Recovering from Human Errors
Most of the backup and high-availability scenarios we’ve discussed involve hardware
or software failures that render the CockroachDB cluster partially or completely
unavailable. While it’s true that hardware failures occur, all too often a database is
compromised because of a human error or a fault in application code. For instance, a
DBA might accidentally drop a table or delete some data or an application developer
might roll out a patch that incorrectly updates important information.

The most important mitigation that CockroachDB offers for these categories of errors
is the ability to access data AS OF SYSTEM TIME. By default, “old” versions of data are
maintained within the system for at least the time period specified by the replication
zone setting gc.ttlseconds. By default, this parameter is set to 14,400 seconds (4
hours), allowing us to retrieve previous versions of data in that period.

AS OF SYSTEM TIME can be used to recover from a variety of data-corruption
scenarios:

• Fine-grained changes to a table can be reversed by replacing the table’s contents•
with that of a simple SELECT query with a specific AS OF SYSTEM TIME. Individ‐
ual row changes can similarly be reversed.

• A backup can be taken with the AS OF SYSTEM TIME clause. This backup can•
effectively represent the state of the database or selected tables at the time prior to
corruption. It sounds kind of amazing to be restoring from a backup taken after a
logical corruption, but it’s a powerful way of undoing any undesirable changes.

• If a backup is created with the WITH REVISION HISTORY option, then the backup•
can be restored to a point in time. So even if the backup was taken after the
logical corruption, it could still be restored to a point before that corruption.

Disaster Recovery Best Practices | 393

Two–Data Center Replication
Up to this point, we’ve discussed disaster recovery in the context of CockroachDB’s
default mode of operation: Raft replication across three or more physical nodes/loca‐
tions. In reality, not every business can (or wants to) run in this fashion. Old habits
die hard and the two–data center approach is still a popular choice.

For these customers, CockroachDB has two products:

Physical cluster replication (PCR)
For companies operating across two data centers and that need a lower RPO
(Recovery Point Objective) / RTO (Recovery Time Objective) than they could
achieve with BACKUP/RESTORE.

Logical data replication (LDR)
For companies that want high availability across two data centers.

Physical Cluster Replication
PCR solves the challenges of high RPO/RTO associated with the BACKUP/RESTORE
model across two data centers. In the best possible scenario, an incremental backup
will run just before a primary data center outage. In reality, outages rarely time
themselves in our favor.

PCR replicates at the cluster level, with the destination cluster being a continuously
updating transactionally consistent snapshot of the source cluster.

In this section, we’ll create a two–data center primary/standby configuration with
PCR running between them. We’ll simulate a complete primary data center failure
and switch traffic to the standby cluster, then “cutback” to the primary cluster once
the outage is resolved. To keep things concise, we’ll be using Docker Compose and
making use of this compose file (https://cockroa.ch/physical_cluster_replication_yaml)
in GitHub. Let’s spin up the clusters now:

docker compose -f compose.yaml up -d

With the clusters started, we’ll need to initialize them. We’ll initialize the primary
cluster such that it can receive connections and serve requests and the standby cluster
such that it can only replicate from the primary:

docker exec -it primary_1 cockroach init --virtualized --insecure
docker exec -it standby_1 cockroach init --virtualized-empty --insecure

We’ll connect to the shells of a node in each of the clusters (you’ll want to run each of
these in a separate terminal):

cockroach sql \
 --url "postgres://root@localhost:26001/?\
 options=-ccluster=system&sslmode=disable"

394 | Chapter 12: Backup and Disaster Recovery

https://cockroa.ch/physical_cluster_replication_yaml

cockroach sql \
 --url "postgres://root@localhost:26002/?\
 options=-ccluster=system&sslmode=disable"

On the primary cluster, we’ll enable rangefeeds. Rangefeeds are required for PCR:

SET CLUSTER SETTING kv.rangefeed.enabled = 'true';

On the standby, we’ll start replicating from the primary (note that because we’re
performing a “cutback” to the primary, both clusters will need rangefeeds enabled):

SET CLUSTER SETTING kv.rangefeed.enabled = 'true';

CREATE VIRTUAL CLUSTER main FROM REPLICATION OF main ON
'postgres://root@primary_1:26257/?options=-ccluster=system&sslmode=disable';

With replication initiated, let’s wait for it to start. Run SHOW VIRTUAL CLUSTER...
and wait for replication to start and for a replication time to be established. Put
simply, cluster virtualization (https://cockroa.ch/47AEEka) allows for the separation
of control and data planes. Data replication is handled by the system virtual cluster,
while users will connect to another virtual cluster—typically called “main.” A value
of “replicating” in the status column indicates that replication has started and the
replicated_time column indicates that a replication has taken place:

SELECT
 status,
 replicated_time
FROM [SHOW VIRTUAL CLUSTER main WITH REPLICATION STATUS];

 status | replicated_time
--------------+-------------------------
 replicating | 2024-09-02 07:53:35+00

With replication running, it’s time to create something to replicate. Connect to the
“main” virtual cluster (the virtual cluster we’re replicating from) on the primary
cluster as follows:

cockroach sql \
 --url "postgres://root@localhost:26001/?\
 options=-ccluster=main&sslmode=disable"

Create a table and insert some data:

CREATE TABLE measurement (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 val DECIMAL NOT NULL,
 cluster_id STRING NOT NULL DEFAULT crdb_internal.cluster_id(),
 ts TIMESTAMPTZ NOT NULL DEFAULT now()
);

INSERT INTO measurement (val) VALUES (1.01), (2.02), (3.03);

Two–Data Center Replication | 395

https://cockroa.ch/47AEEka

After a short period, the table and data will be replicated to the standby cluster’s
“main” virtual cluster and we’re ready to simulate a primary data center outage. As
we’re running in Docker, we’ll simply kill the nodes using docker stop, passing the
SIGKILL signal:

docker stop -s SIGKILL primary_1 primary_2 primary_3

At this point, any client connected to the primary cluster would start receiving errors.
Let’s fix that by allowing the standby cluster to serve client traffic. Run the following
commands on the standby cluster:

-- Tell CockroachDB we're about to cutover.
ALTER VIRTUAL CLUSTER main COMPLETE REPLICATION TO LATEST;

-- Wait for the standby cluster to be ready.
SELECT
 status
FROM [SHOW VIRTUAL CLUSTER main WITH REPLICATION STATUS];

-- Cut over and serve traffic from the standby cluster.
ALTER VIRTUAL CLUSTER main START SERVICE SHARED;

With the standby cluster now ready to serve client traffic, all that remains is to direct
that traffic to the standby cluster. In a primary/standby configuration, you’ll likely
have a load balancer in front of them; use that to direct traffic to the standby cluster
now.

In just a few short steps, we’ve resolved a complete data center outage and brought
service back to our customers. In short, we’ve satisfied our requirements for low RTO.
Let’s tackle our low RPO requirement now.

In a busy system with a constant stream of customer traffic, it’s likely that our sudden
primary data center outage would have resulted in a few failed requests (retryable
once the standby has taken over) and prevented a small amount of data from being
replicated to the standby (data that will be available again once we’ve failed back to
the primary cluster). For some businesses, the risks inherent in the failing over and
failing back of a complex system are great enough that they will continue to run their
production operations against the standby cluster, for fear of introducing another
outage.

CockroachDB is not a complex database to operate and you should have the confi‐
dence to failback to the primary cluster if you want to. Let’s failback to the primary
cluster now.

We’ll start by inserting some data into the standby cluster to simulate new data since
the standby took over (note that we’re using the “main” virtual cluster):

cockroach sql \
 --url "postgres://root@localhost:26002/defaultdb?\
 options=-ccluster=main&\

396 | Chapter 12: Backup and Disaster Recovery

 sslmode=disable" \
 -e "INSERT INTO measurement (val) VALUES (4.04), (5.05), (6.06)"

Let’s bring the primary cluster nodes back online to simulate the resolution of the
original issue:

docker start primary_1 primary_2 primary_3

Now we’re ready to begin the process of cutting back to the primary cluster. Let’s
reconnect to the system tenant on the primary cluster:

cockroach sql \
 --url "postgres://root@localhost:26001/?\
 options=-ccluster=system&sslmode=disable"

A cutback to the primary is more than simply redirecting traffic to our primary
cluster. We want to ensure that any new or updated data that was handled by the
standby cluster is replicated back to the primary cluster. We’ll start by performing the
exact same replication as earlier but in reverse.

First, we’ll need to tell the primary cluster that it’s no longer the primary cluster. We’ll
do this by resetting the service_mode of the “main” virtual cluster. Currently, it’ll be
set to shared, as can be seen from the following query:

SHOW VIRTUAL CLUSTER main;

 id | name | data_state | service_mode
-----+------+------------+---------------
 3 | main | ready | shared

Stop the service to set the service_mode to none, allowing the primary cluster to be a
replication target of the standby cluster:

ALTER VIRTUAL CLUSTER main STOP SERVICE;

Showing the virtual cluster again indicates that the primary cluster is now ready to be
a replication target:

SHOW VIRTUAL CLUSTER main;

 id | name | data_state | service_mode
-----+------+------------+---------------
 3 | main | ready | none

Finally, we’ll start replicating from the standby cluster’s main virtual cluster back to
the primary’s main virtual cluster:

ALTER VIRTUAL CLUSTER main
START REPLICATION
OF main
ON 'postgres://root@standby_1:26257/?options=-ccluster=system&sslmode=disable';

Two–Data Center Replication | 397

Checking on the replication status, we’ll see that initially there’s a large replication lag.
This is simply the amount of time that the primary cluster needs to catch up:

SELECT
 status,
 replicated_time,
 replication_lag
FROM [SHOW VIRTUAL CLUSTER main WITH REPLICATION STATUS];

 status | replicated_time | replication_lag
---------------------------+------------------------+------------------
 initializing replication | 2024-09-02 08:50:00+00 | 00:09:50.742065

Wait until the replication_lag has gone from minutes to seconds and we’ll be ready
to cutback to the primary. We’ll do this by completing replication and waiting for the
status to become “ready”:

ALTER VIRTUAL CLUSTER main COMPLETE REPLICATION TO SYSTEM TIME now();

SELECT
 status,
 replicated_time,
 replication_lag
FROM [SHOW VIRTUAL CLUSTER main WITH REPLICATION STATUS];

And once ready, we’ll allow the primary cluster to serve traffic once more:

ALTER VIRTUAL CLUSTER main START SERVICE SHARED;

At this point, the primary cluster is ready to accept client connections; if you have
a load balancer in front of the clusters, now’s the time to repoint it to the primary
cluster.

Running a query against the primary cluster now shows that we have all of our origi‐
nal primary cluster data, along with the data that was inserted against the standby
cluster:

cockroach sql \
 --url "postgres://root@localhost:26001/defaultdb?\
 options=-ccluster=main&\
 sslmode=disable" \
 -e "SELECT val, ts FROM measurement ORDER BY val"

We’ve just satisfied our requirement for low RPO, having lost no data during the
outage. Low RPO and RTO are exactly what PCR was designed to provide.

Logical Data Replication
In its default configuration, CockroachDB is a multiactive distributed system, mean‐
ing every node behaves the same and can perform the same function. There are no
“primary” or “read-only replicas” in CockroachDB unless you ask it for that behavior.

398 | Chapter 12: Backup and Disaster Recovery

If PCR is CockroachDB’s answer to primary/standby for two–data center configura‐
tions, LDR is its answer to active/active two–data center configurations. While PCR
replicates at the cluster level, LDR replicates subsets of a database’s tables.

By default, an LDR stream is unidirectional, meaning it replicates from one cluster
to another. However, CockroachDB also allows another unidirectional stream to be
created in the other direction, allowing bidirectional replication between two clusters.

In this section, let’s assume we’re a business with presence on the US East Coast,
running one CockroachDB cluster. We have a handful of West Coast customers and,
up to this point, serving them with higher read and write latencies from our East
Coast cluster has been acceptable. Fast-forward a year and an increase in West Coast
traffic is highlighting the need for a West Coast CockroachDB presence (and latency
equality). Our fictional business prefers a two–data center configuration, so instead of
creating a three-region CockroachDB cluster and using Raft replication, we’ll create a
new cluster on the West Coast and harness LDR.

First, we’ll spin up and connect to our East Coast cluster, simulating day one of our
business operations:

cockroach start-single-node \
 --insecure \
 --store=path=node1 \
 --locality=region=east-coast \
 --listen-addr=localhost:26001 \
 --http-addr=localhost:8001 \
 --background

cockroach sql \
 --url "postgres://root@localhost:26001?sslmode=disable"

Next we’ll create some tables to simulate those we’ll need for our fictional business
and enable rangefeeds, which is required for LDR:

CREATE TABLE member (
 "id" UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 "email" STRING NOT NULL,
 "registered" TIMESTAMPTZ NOT NULL DEFAULT now()
);

CREATE TABLE product (
 "id" UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 "name" STRING NOT NULL,
 "price" DECIMAL NOT NULL
);

CREATE TABLE purchase (
 "member_id" UUID NOT NULL REFERENCES member(id),
 "ts" TIMESTAMPTZ NOT NULL DEFAULT now(),
 "amount" DECIMAL NOT NULL,
 "receipt" JSON NOT NULL,

Two–Data Center Replication | 399

 PRIMARY KEY ("member_id", "ts")
);

SET CLUSTER SETTING kv.rangefeed.enabled = 'on';

We’ll simulate East Coast activity with some data in each of the tables:

INSERT INTO member (id, email) VALUES
 ('1cd86902-f65a-4ec1-ad38-cfccd50302e6', 'a@example.com'),
 ('64567355-d44b-4b22-8979-8b17b12adcf6', 'b@example.com'),
 ('a94939ab-4b07-416e-a275-45c1a2b87602', 'c@example.com');

INSERT INTO product (id, name, price) VALUES
 ('c5ac4b4b-b30e-43e9-9dad-67fd69d63098', 'p1', 1.99),
 ('3c84ec56-3146-4c46-a506-737fc3373afc', 'p2', 2.99),
 ('c87bdc2b-7a21-40da-a974-9eecc90f3197', 'p3', 3.99);

INSERT INTO purchase (member_id, amount, receipt) VALUES
 ('1cd86902-f65a-4ec1-ad38-cfccd50302e6', 8.97, '{}'),
 ('64567355-d44b-4b22-8979-8b17b12adcf6', 18.93, '{}'),
 ('a94939ab-4b07-416e-a275-45c1a2b87602', 21.91, '{}');

Let’s assume we’re now one year into our business and we can no longer ignore the
latency inequality between the East and West coasts. Let’s spin up and connect to a
West Coast cluster:

cockroach start-single-node \
 --insecure \
 --store=path=node2 \
 --locality=region=west-coast \
 --listen-addr=localhost:26002 \
 --http-addr=localhost:8002 \
 --background

cockroach sql \
 --url "postgres://root@localhost:26002?sslmode=disable"

We’ll re-create the same tables that exist on our East Coast cluster and enable range‐
feeds:

CREATE TABLE member (
 "id" UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 "email" STRING NOT NULL,
 "registered" TIMESTAMPTZ NOT NULL DEFAULT now()
);

CREATE TABLE product (
 "id" UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 "name" STRING NOT NULL,
 "price" DECIMAL NOT NULL
);

400 | Chapter 12: Backup and Disaster Recovery

CREATE TABLE purchase (
 "member_id" UUID NOT NULL REFERENCES member(id),
 "ts" TIMESTAMPTZ NOT NULL DEFAULT now(),
 "amount" DECIMAL NOT NULL,
 "receipt" JSON NOT NULL,

 PRIMARY KEY ("member_id", "ts")
);

SET CLUSTER SETTING kv.rangefeed.enabled = 'on';

Finally, we’ll start replicating data from the East Coast cluster to our new West Coast
cluster:

CREATE LOGICAL REPLICATION STREAM
FROM TABLES (member, product, purchase)
ON 'postgres://root@localhost:26001'
INTO TABLES (member, product, purchase);

LDR provides strong consistency for customers against their local cluster and even‐
tual consistency between clusters. This means replication from East to West won’t be
immediate. After a few seconds, query the West Coast tables to assert that data is
being replicated from our East Coast tables:

SELECT COUNT(*) FROM member;
SELECT COUNT(*) FROM product;
SELECT COUNT(*) FROM purchase;

 count

 3

 count

 3

 count

 3

Success! We’re replicating East Coast data to the West Coast.

Now let’s simulate West Coast customer activity against the West Coast. Run the
following INSERTs against the West Coast cluster:

INSERT INTO member (id, email) VALUES
 ('e5efb75b-36bb-4c16-9dc5-aa53c07346d6', 'd@example.com');

INSERT INTO product (id, name, price) VALUES
 ('5817b475-f123-4d5f-861e-7d730130d541', 'p4', 4.99);

INSERT INTO purchase (member_id, amount, receipt) VALUES
 ('e5efb75b-36bb-4c16-9dc5-aa53c07346d6', 19.96, '{}');

Two–Data Center Replication | 401

Because the LDR replication stream is unidirectional, our West Coast tables will
contain four rows, while our East Coast tables will contain only the original three
rows. Let’s fix that by introducing a new unidirectional stream from West to East and
complete our bidirectional replication. Run the following on the East Coast cluster
(the exact query we ran on the West Coast, only the other way around):

CREATE LOGICAL REPLICATION STREAM
FROM TABLES (member, product, purchase)
ON 'postgres://root@localhost:26002'
INTO TABLES (member, product, purchase);

From now on, data will replicate bidirectionally between the East Coast and West
Coast clusters. After a few seconds, the number of rows in each of the tables for both
clusters will be four.

Summary
CockroachDB backups are typically used as a mechanism for recovering a
CockroachDB cluster in the event of a truly catastrophic failure. They also play a
role in allowing us to recover from a variety of data corruption issues that can be the
result of human failures or application errors. CockroachDB supports a rich range of
backup and restore options.

Backups are needed less frequently in distributed databases because replication allows
the database to continue functioning in the presence of failures that would break
a monolithic database such as Oracle or MySQL. However, this doesn’t reduce the
need to implement a robust and tested backup and restore facility. You don’t cancel
your fire insurance just because you’ve installed some fire suppression equipment.
Likewise, you should not neglect backups just because you have a fault-tolerant
database cluster.

Customers running infrastructure across two (rather than three or more) locations
are also well-served by CockroachDB:

• PCR enables lower RPOs and RTOs than BACKUP/RESTORE would achieve,•
thanks to the continuous stream of replicated data to the standby cluster. Run‐
ning PCR across regions enables regional survivability with just two regions.

• LDR provides strong consistency on each cluster and asynchronous replication•
between clusters, resulting in eventual consistency between clusters, and lower
RPOs and RTOs than BACKUP/RESTORE would achieve.

In the next chapter, we’ll explore the tools available for securing both managed and
self-hosted clusters.

402 | Chapter 12: Backup and Disaster Recovery

CHAPTER 13

Security

In the Information Age, data is one of the world’s most valuable commodities. It
can confer competitive advantage through enhanced operational intelligence, and it is
often subject to the most stringent privacy regulations. Databases are frequently the
target of data theft, ransomware attacks, and data tampering.

CockroachDB supports industrial-strength security features that protect your data‐
base from malicious attacks and also to some degree from human error and applica‐
tion bugs.

A well-secured CockroachDB deployment uses defense-in-depth to protect the data‐
base: multiple levels of security that protect against intrusion or unauthorized activi‐
ties. These include:

• Firewall rules that restrict cluster connections to known and trusted network•
addresses.

• Transport Layer Security (TLS) encryption in flight to prevent access of data in•
transit. TLS authentication can also be used to defeat man-in-the-middle attacks
and to provide a level of client authentication.

• Encryption at rest: a feature that allows data files on disk to be encrypted.•
• A variety of authentication mechanisms to determine a user’s identity, including•

username/password, key file, Kerberos, and OAuth.
• A role-based authorization system that controls access to data and to system•

commands.
• Logging options that allow for tracking of user access. Standard logging allows•

tracking of authentication events and SQL executions, while audit logging allows
for fine-grained tracking of access to sensitive data.

403

We’ll discuss each of these in detail within this chapter.

Firewall Configuration
Most attempts to gain access to a CockroachDB database will occur through the SQL
port—which by default is listening on port 26257. Restricting access to this port to
authorized IP addresses is an obvious first step in securing a cluster.

IP Allowlist with CockroachDB Cloud
Every tier in CockroachDB Cloud provides an IP allowlist function that serves as a
global firewall for the cluster. Using the allowlist, we can allow individual IP addresses
or IP address ranges in Classless Inter-Domain Routing (CIDR) format to connect to
the cluster. Figure 13-1 shows us adding a new CIDR range to a CockroachDB Cloud
Advanced cluster.

Figure 13-1. Setting up an allowlist in CockroachDB Advanced

CIDR Range Notation
CIDR provides a succinct but irritating way of specifying IP address ranges. It takes
an IP address followed by a slash and an IP network prefix. This prefix specifies the
number of bits to include in the output range. IPv4 networks have 32 bits, so a prefix
of 24 would leave 8 bits for addresses, which provides a range of 256 addresses.
Therefore, 10.0.0.0/24 specifies a range of 256 addresses from 10.0.0.0 to 10.0.0.255.
10.0.0.0/16 provides for 64K addresses from 10.0.0.0 to 10.0.255.255.

If you want to convert ranges to CIDR notation or vice versa, there are many handy
calculators on the web (https://cockroa.ch/3j0a0IF).

404 | Chapter 13: Security

https://cockroa.ch/3j0a0IF
https://cockroa.ch/3j0a0IF

Egress Perimeter Controls
In addition to protecting a CockroachDB cluster by restricting the IPs or CIDRs that
can connect to it, it’s also possible to prevent a CockroachDB cluster from accessing
external IPs or CIDRs by harnessing egress perimeter controls.

Let’s assume we have a CockroachDB Cloud Advanced cluster and we’d like to add
egress perimeter controls to it. It first needs to be a “private cluster,” meaning the
cluster is connected to your own VPC by way of AWS PrivateLink or GCP Private
Service Connect. We’ll cover these later in this chapter.

With private connectivity configured for the cluster, we’re now ready to enable
egress perimeter controls, and we can do this using the Cloud API (https://cockroa.ch/
4djxYrM).

Our first task when creating an egress perimeter is to block all external connectivity
to the cluster as follows:

curl "https://cockroachlabs.cloud/api/v1/clusters/\
cc8623b1-24e3-4f95-82aa-6ff019c31b45/networking/egress-rules/\
egress-traffic-policy" \
 -X POST \
 -H "Authorization: Bearer YOUR_COCKROACHDB_API_TOKEN" \
 -d '{"allow_all": false}'

With all externally connectivity blocked, it’s time to incrementally open the perimeter
to external connections. By configuring the cluster this way, we’re adhering to the
principle of least privilege.

Let’s assume that in our scenario, we’d like to integrate CockroachDB with down‐
stream consumers via Kafka. If we try to create a Kafka CDC sink at this point, it will
be blocked from interacting with any external Kafka services. Let’s fix that by allowing
the external connectivity to Kafka.

First we’ll create a file that contains the rules that allow our external connectivity
to Kafka. This will allow CockroachDB to access port 9092 on any exposed Kafka
services on our fictional 10.0.0.1/16 VPC subnet:

{
 "name": "kafka",
 "type": "CIDR",
 "destination": "10.0.0.1/16",
 "ports": [9092],
 "paths": [],
 "description": "Allow rule for Kafka"
}

Firewall Configuration | 405

https://cockroa.ch/4djxYrM

Finally, we apply this rule via the Cloud API in the same way we applied the rule to
initially block external connections:

curl "https://cockroachlabs.cloud/api/v1/clusters/ID/networking/egress-rules" \
 -X POST \
 -H "Authorization: Bearer YOUR_COCKROACHDB_API_TOKEN" \
 -d "@path/to/your/kafka.json"

Once applied, any Kafka CDC sink configured against Kafka services within the
10.0.0.1/16 range will succeed.

Private Connectivity and VPC Peering
A traditional method for securing connections between a private VPC and a software
as a service (SaaS) application is VPC Peering. This opens up both sides of the
network (your network and that of the SaaS application) so they can privately com‐
municate with one another, as if they were on the same network.

This has the drawback of exposing everything in either VPC to the other. There
might be things on your private VPC that you do not wish to expose to your SaaS
provider’s VPC. For this reason, CockroachDB Cloud’s Standard and Advanced tiers
provide private connectivity by way of AWS PrivateLink and GCP Private Service
Connect for AWS and GCP, respectively (with traditional VPC Peering for Azure
until Azure Private Link is supported).

These services not only result in a more secure connection between your VPC and
CockroachDB but remove the need for a number of infrastructure components such
as internet gateways, NAT gateways, public IPs, and route tables.

AWS PrivateLink
AWS PrivateLink is available for both CockroachDB Cloud Standard and Advanced
clusters. To create a PrivateLink, navigate to the Networking section on your
CockroachDB Cloud Advanced cluster and then the Private endpoint tab. Click “Add
a private endpoint” to start creating your AWS PrivateLink connection.

In the resulting dialog, you’ll see a Service name and availability zone IDs. We’ll use
these when creating our Endpoint in AWS. For the purposes of this example, let’s
assume the following values:

• Service name: com.amazonaws.vpce.eu-west-1.vpce-svc-081f3a7697b0b24b9•
• Availability zone IDs: euw1-az1, euw1-az2, euw1-az3•

The following code assumes Terraform (https://cockroa.ch/4euCuVx) as the infra‐
structure as code (IaC) provider. Let’s step through each of the important Terraform
resources and how they help to create the PrivateLink endpoint in AWS.

406 | Chapter 13: Security

https://cockroa.ch/4euCuVx

First, we have the provider configuration; this tells Terraform which version of the
AWS provider we’d like to use and sets the default region to “eu-west-1” (the region
we’ve deployed CockroachDB to):

terraform {
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 5.0"
 }
 }
}

provider "aws" {
 region = "eu-west-1"
}

Next, we create the VPC and subnets. Note that because CockroachDB is available
across three subnets (as per the information provided in the dialog), we’ll create three
subnets. Our VPC CIDR is 13.0.0.1/16 and the three subnets will be 13.0.1.0/24,
13.0.2.0/24, and 13.0.3.0/24:

locals {
 subnets = {
 "eu-west-1a" : "13.0.1.0/24",
 "eu-west-1b" : "13.0.2.0/24",
 "eu-west-1c" : "13.0.3.0/24",
 }
}

resource "aws_vpc" "private" {
 cidr_block = "13.0.0.0/16"
 enable_dns_hostnames = true
 enable_dns_support = true

 tags = {
 Name = "crdb-definitive-guide"
 }
}

resource "aws_subnet" "private" {
 for_each = local.subnets

 vpc_id = aws_vpc.private.id
 cidr_block = each.value
 availability_zone = each.key

 tags = {
 Name = each.key
 }
}

Firewall Configuration | 407

Next, we’ll need to allow access to CockroachDB’s 26257 port. We’ll do that with a
security group and ingress rule:

resource "aws_security_group" "allow_crdb" {
 name = "allow_crdb"
 description = "Allow inbound traffic for CockroachDB"
 vpc_id = aws_vpc.private.id

 tags = {
 Name = "allow_crdb"
 }
}

resource "aws_vpc_security_group_ingress_rule" "allow_crdb_ipv4" {
 security_group_id = aws_security_group.allow_crdb.id
 cidr_ipv4 = aws_vpc.private.cidr_block
 ip_protocol = "tcp"
 from_port = 25267
 to_port = 25267
}

Finally, we’ll create the Endpoint itself, making use of the service name CockroachDB
provided at the start and our AWS resources we’ve configured along the way. Notice
the “endpoint_id” output that will print the resulting Endpoint ID to the console
post-apply; we’ll need this in a moment:

resource "aws_vpc_endpoint" "private-aws-standard" {
 vpc_id = aws_vpc.private.id
 service_name = "com.amazonaws.vpce.eu-west-1.vpce-svc-081f3a7697b0b24b9"
 vpc_endpoint_type = "Interface"
 subnet_ids = values(aws_subnet.private)[*].id

 tags = {
 Name = "aws-standard"
 }
}

output "endpoint_id" {
 value = aws_vpc_endpoint.private-aws-standard.id
}

Now we’re ready to apply the infrastructure. We’ll initialize Terraform and run apply
(all Terraform logs will be omitted, except for the endpoint_id output):

terraform init
terraform apply --auto-approve

...

Apply complete! Resources: 7 added, 0 changed, 0 destroyed.

408 | Chapter 13: Security

Outputs:

endpoint_id = "vpce-0d92be01217aaf9c1"

Back in the CockroachDB console, we enter the generated VPC Endpoint ID copied
from our Terraform output and click Validate. This will finalize the connection
between our CockroachDB cluster and our AWS VPC.

Our very last step is to revisit the AWS console, find our Endpoint, then click Actions
> Modify private DNS name, check the “Enable for this endpoint” checkbox, and
save.

Our CockroachDB cluster is now accessible from within our private VPC and our
infosec team can breathe a sigh of relief.

GCP Private Service Connect
Just as AWS PrivateLink enables secure private connections to AWS VPCs, GCP’s
Private Service Connect (PSC) enables secure private connections to GCP VPCs.
In this section, we’ll connect a CockroachDB Cloud Standard cluster running in
europe-west1 to a private VPC in GCP.

As at the time of writing, the Terraform documentation on connecting endpoints via
PSC is lacking, so we’ll be using gcloud.

To connect an endpoint via PSC, navigate to the Networking section on your
CockroachDB Cloud Standard or Advanced cluster and then the Private endpoint
tab. Click “Add a private endpoint” to start creating your GCP PSC connection.

In the resulting dialog, you’ll see a Target service and a Routing ID. We’ll use these
when creating our Endpoint in GCP. For the purposes of this example, let’s assume
the following values and set them as environment variables:

• Target service: https://www.googleapis.com/compute/v1/projects/crl-prod-jxf/re•
gions/europe-west1/serviceAttachments/crl-prod-jxf-europe-west1-sqlproxy

• Routing ID: crdb-psc-3396 (this will be the name of your cluster, with a numeric•
suffix)

export TARGET_SERVICE="https://www.googleapis.com/.../crl-prod-jxf..."
export ROUTING_ID="crdb-psc-3396"

The first step is to select the GCP project to use; this can be done as follows:

gcloud config set project YOUR_PROJECT_NAME

Firewall Configuration | 409

Next, we’ll create a network. This will be our private VPC that connects to
CockroachDB via PSC:

gcloud compute networks create example \
 --subnet-mode=auto \
 --bgp-routing-mode=regional

Once the network is created, we’ll need a static IP for the PSC connection.

gcloud compute addresses create crdb-psc \
 --subnet example \
 --region europe-west1

A PSC endpoint will be automatically registered with Service Directory via the goog-
psc-default namespace. It’s possible to create your own using the gcloud service-
directory namespaces create and gcloud dns managed-zones create commands
(arguments omitted) but to keep things brief, we’ll use the default namespace.

It’s now time to create the PSC endpoint. If you’ve created a custom Service Directory
namespace, apply it with the --service-directory-registration argument.

gcloud compute forwarding-rules create ${ROUTING_ID} \
 --region=europe-west1 \
 --network=example \
 --address=crdb-psc \
 --target-service-attachment=${TARGET_SERVICE} \
 --allow-psc-global-access

Finally, grab the pscConnectionId that will be printed from the following command:

gcloud compute forwarding-rules describe ${ROUTING_ID} \
 --region europe-west1

Back in the CockroachDB console, click Next in the Add a private endpoint dialog,
paste the ID you just copied, and click Validate.

Once validated, click Complete to finish the process. Our CockroachDB cluster is
now accessible from within our private GCP network.

Native Linux Firewall
Linux kernels incorporate firewall functionality that can be used to restrict inbound
access to nominated IP ranges.

On modern Ubuntu-based systems, the ufw (Uncomplicated Firewall) is the default
firewall configuration tool. If ufw is disabled, it should first be enabled:

$ sudo ufw status
Status: inactive
$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y
Firewall is active and enabled on system startup

410 | Chapter 13: Security

By default, only ssh will be enabled:

$ sudo ufw status
Status: active

To Action From
-- ------ ----
22/tcp ALLOW Anywhere
22/tcp (v6) ALLOW Anywhere (v6)

For a CockroachDB node to communicate to other nodes of the cluster and for client
connections to succeed, we need to enable access from those addresses:

$ sudo ufw allow proto tcp from 192.168.0.50 to any port 26257
Rule added
$ sudo ufw allow proto tcp from 192.168.0.53 to any port 26257
Rule added
$ sudo ufw status
Status: active

To Action From
-- ------ ----
22/tcp ALLOW Anywhere
26257/tcp ALLOW 192.168.0.50
26257/tcp ALLOW 192.168.0.53
22/tcp (v6) ALLOW Anywhere (v6)

To allow clients to connect to the cluster, their IP addresses also need to be added.
You can add each client individually, but it’s often easier to specify an IP address
range in CIDR format:

$ sudo ufw allow proto tcp from 192.168.0.0/24 to any port 26257
Rule added
$ sudo ufw status
Status: active

To Action From
-- ------ ----
22/tcp ALLOW Anywhere
26257/tcp ALLOW 192.168.0.50
26257/tcp ALLOW 192.168.0.53
26257/tcp ALLOW 192.168.0.0/24
22/tcp (v6) ALLOW Anywhere (v6)

You will want to configure similar firewall rules for the DB Console (port 8080)
and for the load balancer machine. The load balancer allows access from behind
the firewall to the CockroachDB nodes, so it’s essential that it not be open to the
wide network. The DB Console is a lesser risk, but a hacker could still potentially
retrieve sensitive information or discover cluster vulnerabilities if they got access to
the console.

Firewall Configuration | 411

Configuring a Firewall in GCP
If you have a CockroachDB self-hosted cluster on a public cloud, you will generally
control access to the CockroachDB ports using the cloud vendor’s security rules.

In the GCP, these rules can be found under Networking → VPC network → Firewall,
as shown in Figure 13-2.

Figure 13-2. Setting firewall rules in Google Cloud Platform

412 | Chapter 13: Security

The firewall rules in Figure 13-2 can also be created using the following gcloud
command:

gcloud compute --project=just-rhythm-211204 firewall-rules \
 create cdb-firewall-rule --description="CockroachDB server SQL port" \
 --direction=INGRESS --priority=1000 --network=default \
 --action=ALLOW --rules=tcp:26257 --source-ranges=192.168.4.0/24 \
 --target-tags=cdb-server

Once the rule is created, you can add the associated target tag to a VM (https://cock
roa.ch/3j1Zwbs). This can be done from the VM Instances page, using the following
gcloud syntax:

$ ~ gcloud compute --project=just-rhythm-211204 instances add-tags instance-1 \
 --tags cdb-server --zone us-central1-a

Configuring a Firewall in AWS
AWS security groups control port access to EC2 instances. They can be created and
associated with EC2 machines. Figure 13-3 shows us making a new rule during the
creation of a new EC2 VM.

Figure 13-3. Configuring an AWS security group during EC2 initialization

Alternatively, you can create a named firewall rule and add it to existing EC2 instan‐
ces, as shown in Figure 13-4.

Firewall Configuration | 413

https://cockroa.ch/3j1Zwbs

Figure 13-4. Configuring an AWS security group

Configuring Ports for Microsoft Azure
We can specify security rules for Azure VMs during VM creation or with Azure
network security groups. Once created, this security group can be reused by other
VMs by referring to the name given during its creation. Figure 13-5 shows us creating
a security rule for the Centos8 VM called crdb-server. Once created, we can add
that security group to other servers supporting the cluster.

414 | Chapter 13: Security

Figure 13-5. Creating a security rule during Microsoft Azure VM creation

Encryption and Server Certificates
Transmissions between clients and servers will be encrypted unless the server is
running in insecure mode. Running in insecure mode is definitely not an option
for a production system.

CockroachDB Cloud connections will always be encrypted. The certificates necessary
to establish the connection are provided by Cockroach Labs and can be downloaded
from the Cloud console.

For a self-hosted deployment, you are responsible for creating a server certificate
that is used to encrypt wire protocol transmissions between client and server. This
certificate is used to encrypt both the SQL protocol messages (over port 26257 by
default) and the DB Console (over port 8080 by default).

Encryption and Server Certificates | 415

We showed how to create self-signed certificates in Chapter 10. The Cockroach
binary can create both a self-signed CA certificate (cockroach cert create-ca) and
certificates for each node signed by that CA certificate (cockroach cert create-
node).

A self-signed certificate is sufficient to ensure that communication across the wire
is encrypted. However, such a certificate cannot be used to definitively prove that a
server is what it claims to be.

Because a self-signed certificate cannot be used to definitively establish the identity
of a server, web browsers will object when an HTTPS connection is established to
a CockroachDB server that uses a self-signed certificate. Consequently, when you
connect to the database console for a self-signed CockroachDB server, your browser
will require that you click through a series of alarming-sounding warnings.

The CockroachDB documentation (https://cockroa.ch/3qWPw7Z) has more informa‐
tion about using custom CA certificates.

Encryption at Rest
Encryption at rest allows for the encryption of a CockroachDB node’s data on disk.
Without encryption at rest, an attacker who gets access to the machine hosting a
node’s data files might be able to extract data from those files, even if they do not have
the necessary CockroachDB credentials to read that data. An attacker might also be
able to extract meaningful data from OS snapshots of the store files taken for backup
purposes.

CockroachDB uses two layers of encryption keys. The store key is provided by the
user at node startup. It is used to encrypt data keys that are used to encrypt files on
disk.

We can create a store key using the cockroach gen encryption-key command:

$ cockroach gen encryption-key -s 128 $HOME/.cockroachKeys/crdb-aes-128.key
 created AES-128 key: /home/cockroachdb/.cockroachKeys/crdb-aes-128.key

Here we use that key to start a new single-node cluster:

$ cockroach start-single-node \
 --store=/var/lib/cockroachdb/encrypted-cockroach-data \
 --enterprise-encryption=path=\
 /var/lib/cockroachdb/encrypted-cockroach-data\
 ,key=/home/cockroachdb/.cockroachKeys/crdb-aes-128.key\
 ,old-key=plain \
 --certs-dir=/var/lib/cockroachdb/certs
*
*
*

416 | Chapter 13: Security

https://cockroa.ch/3qWPw7Z

CockroachDB node starting at 2021-10-10 23:40:39.232036716 +0000 UTC (took 0.5s)
nodeID: 1

The old-key argument allows us to rotate from one key to another. It’s best practice
to rotate keys to reduce the risk of a key becoming compromised. The special key
plain indicates that the files are not encrypted; when we first encrypt, we use plain
as the old key, indicating that the files are not currently encrypted.

Here we create a new key and restart our cluster to use that new key:

$ cockroach gen encryption-key -s 128 \
 $HOME/.cockroachKeys/new-crdb-aes-128.key
 created AES-128 key: /home/cockroachdb/.cockroachKeys/new-crdb-aes-128.key
$ cockroach start-single-node \
 --store=/var/lib/cockroachdb/encrypted-cockroach-data \
 --enterprise-encryption=path=\
 /var/lib/cockroachdb/encrypted-cockroach-data,\
 key=/home/cockroachdb/.cockroachKeys/new-crdb-aes-128.key,\
 old-key=/home/cockroachdb/.cockroachKeys/crdb-aes-128.key \
 --certs-dir=/var/lib/cockroachdb/certs
*
*
CockroachDB node starting at 2021-10-10 23:46:03.452508125 +0000 UTC (took 0.3s)
clusterID: dd842f97-4833-4ff6-ae9f-03bb23a4b953

In Chapter 10, we created a three-node self-hosted cluster that was managed by a
systemctl service. To implement encryption on that server, we would modify the
cockroachdb.service file as follows:

$ cat /etc/systemd/system/cockroachdb.service
[Unit]
Description=Cockroach Database cluster node
Requires=network.target
[Service]
Type=notify
WorkingDirectory=/var/lib/cockroachdb
ExecStart=/usr/local/bin/cockroach start --certs-dir=certs
--advertise-addr=gubuntu2 --join=gubuntu1,gubuntu2,gubuntu3
--locality=region=us-west-1,zone=us-west-1a --max-sql-memory=.35
--cache=.35
--enterprise-encryption=path=/var/lib/cockroachdb/cockroach-data,
key=/home/cockroachdb/.cockroachKeys/crdb-aes-128.key,
old-key=plain
TimeoutStopSec=60
Restart=always
RestartSec=10
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=cockroachdb
User=cockroachdb
[Install]

Encryption at Rest | 417

And then restart:

$ sudo systemctl daemon-reload
$ sudo systemctl restart cockroachdb

You can see the status of encryption on the console “stores” report within the
DBConsole at https://nodeaddress:8080/#/reports/stores/local. Figure 13-6 provides an
example of a cluster that has just been restarted with encryption on.

Figure 13-6. Viewing encryption progress on the CockroachDB Console

Customer-Managed Encryption Keys
Customer-managed encryption keys (CMEKs) allow customers to bring their own
keys for use in the encryption of data at-rest. Customers with stringent security
requirements may prefer (or be required) to use CMEKs, as they allow them to:

• Maintain full control over the lifecycle of their encryption keys•
• Implement their own key rotation policies and schedules•
• Revoke access to their data instantly by destroying or disabling the key•
• Meet specific regulatory compliance requirements for data protection•
• Ensure that their data remains inaccessible without their explicit authorization•

418 | Chapter 13: Security

• Demonstrate their data encryption process during an audit•

In this section, we’ll create a key using AWS KMS and apply it to a CockroachDB
Cloud Advanced cluster running in AWS.

First, create a CockroachDB Cloud Advanced cluster in AWS. I’m based in London,
so I’ll be creating a single-region cluster in eu-west-2. This will be important later,
when it comes to enabling our CMEK.

With the cluster up and running, we need to grab a couple of UUIDs. In
the CockroachDB Cloud console, visit Organization > Information and copy
your organization ID. For this example, let’s assume our organization ID is
1facdf05-69f2-4620-9deb-344d3921e4ec. Next, visit your cluster and copy its ID
from the URL (for example, ee98… is the cluster ID in this URL: https://cockroach
labs.cloud/cluster/ee982914-2774-4f6c-aca3-3fb90195d97e/overview).

We’ll now use the Cloud API to obtain the cluster’s own AWS account ID (note that
this will be different from your own AWS account IDs).

First, create a CLUSTER_ID environment variable using the value obtained from the
URL:

export CLUSTER_ID=ee982914-2774-4f6c-aca3-3fb90195d97e

Next, obtain the cluster’s account ID using the Cloud API:

curl -s https://cockroachlabs.cloud/api/v1/clusters/ee982914-2774-4f6c-aca3... \
 -H "Authorization: Bearer ${COCKROACH_API_KEY}" | jq .account_id

For the sake of this demo, let’s assume the cluster’s AWS account ID is 601950302614.

Then create an IAM role and KMS key in your own AWS account, along with a
KMS key. For this we’ll use Terraform. We’ll start by initializing the AWS Terraform
provider:

terraform {
 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 5.0"
 }
 }
}

provider "aws" {
 region = "eu-west-2"
}

Encryption at Rest | 419

After that, we’ll create the IAM role. Note the use of the cluster’s AWS account ID for
the AWS principal and the organization ID for the ExternalId:

resource "aws_iam_role" "kms" {
 name = "kms"

 assume_role_policy = <<-EOT
 {
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":"sts:AssumeRole",
 "Principal":{
 "AWS":"601950302614"
 },
 "Condition":{
 "StringEquals":{
 "sts:ExternalId":"1facdf05-69f2-4620-9deb-344d3921e4ec"
 }
 }
 }
]
 }
 EOT
}

From there, we’ll create the KMS key, applying a policy that allows the previously
configured cross-account IAM role to use it for data encryption and decryption.
To manage the key, you’ll also want to grant internal administrative access to the
key. Note that for brevity’s sake, we’ve granted the caller identity access to all KMS
operations. In reality, you’d want to restrict this to only the essential operations.

data "aws_caller_identity" "current" {}

resource "aws_kms_key" "kms" {
 description = "The KMS key that will encrypt CockroachDB data"
 enable_key_rotation = true
 key_usage = "ENCRYPT_DECRYPT"

 policy = <<-EOT
 {
 "Version":"2012-10-17",
 "Id":"crdb-cmek-kms",
 "Statement":[
 {
 "Sid":"Allow use of the key for CMEK",
 "Effect":"Allow",
 "Principal":{
 "AWS":"${aws_iam_role.kms.arn}"
 },

420 | Chapter 13: Security

 "Action":[
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:ReEncrypt*"
],
 "Resource":"*"
 },
 {
 "Sid":"Allow administration of the key",
 "Effect":"Allow",
 "Principal":{
 "AWS": "${data.aws_caller_identity.current.arn}"
 },
 "Action":[
 "kms:*"
],
 "Resource":"*"
 }
]
 }
 EOT
}

Finally, we’ll output the Amazon Resource Names (ARNs) of both the KMS key and
the IAM role. We’ll need these later:

output "role_arn" {
 value = aws_iam_role.kms.arn
}

output "kms_arn" {
 value = aws_kms_key.kms.arn
}

With the Terraform resources ready, we can initialize Terraform and apply the code:

terraform init
terraform apply --auto-approve

That’s the AWS side of the infrastructure ready. The only thing left to do now is
enable CMEK via the Cloud API. Create a file called cmek_config.json (this can be
called anything but we’ll be using this name shortly) and add the following:

{
 "region_specs": [
 {
 "region": "eu-west-2",
 "key_spec": {
 "type": "AWS_KMS",
 "uri": "YOUR_KMS_KEY_ARN",

Encryption at Rest | 421

 "auth_principal": "YOUR_IAM_ROLE_ARN"
 }
 }
]
}

As our cluster spans just one region (eu-west-2), there’s only one region configured in
the region_specs array.

Enable CMEK with the following Cloud API request (note the cluster ID in the URL
and the reference to the cmek_config.json file):

curl -s https://cockroachlabs.cloud/api/v1/clusters/ee982914-2774-4f6c.../cmek \
 -X POST \
 -H "Authorization: Bearer ${COCKROACH_API_KEY}" \
 -H 'Content-Type: application/json' \
 -d "@cmek_config.json"

After a short while, CMEK will be enabled and the CMEK task of our Advanced
cluster’s PCI Data Security Standard (PCI DSS) readiness checklist will go from
INACTIVE to ACTIVE. Our cluster’s data is now encrypted with our very own key!
You can check on the status of the CMEK activation with the following Cloud API
request:

curl -s https://cockroachlabs.cloud/api/v1/clusters/ee982914-2774-4f6c.../cmek \
 -H "Authorization: Bearer ${COCKROACH_API_KEY}"

Best Practices for Key Management
Although the store key is not directly used to encrypt data files, a talented hacker
would be able to use this key to decrypt CockroachDB data files. Furthermore, loss of
the key could render your CockroachDB database unusable.

To prevent loss of the encryption key, your encryption keys should always be securely
stored outside of the CockroachDB host, ideally in a KMS specifically designed to
secure and protect keys.

Because the store key is needed only when the CockroachDB server is started, it may
be advisable to make the store key available only during system startup. That way, an
attacker who gains root access to the server will not automatically gain access to the
store key.

422 | Chapter 13: Security

Authentication Mechanisms
Authentication allows CockroachDB to determine the identity of the entity attempt‐
ing to establish a connection. Members of the cluster authenticate themselves using
node certificates and keys—as outlined in Chapter 10.

Standard Authentication
Clients—programs that wish to interact with the CockroachDB server—use a combi‐
nation of username/password authentication together with client certificate and key
authentication.

CockroachDB Cloud clusters use a server certificate together with username and
passwords. The server certificate guarantees the identity of the server and allows
for encrypted communication, while the username and password are used to authen‐
ticate the specific user.

In the initial setup of our self-hosted cluster in Chapter 10, we created a CA cer‐
tificate (ca.crt) as well as certificates and keys for the root user. Our certificates
directory looked like this:

$ ls certs
ca.crt client.root.crt client.root.key

Because we had both the certificate and the key for the root user, we were able to
connect to that user without a password:

$ cockroach sql --host gubuntu1 --user=root --certs-dir=certs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Enter \? for a brief introduction.
#
root@gubuntu1:26257/defaultdb>

Without the client certificates, we can still connect to the cluster, but we must provide
a password for the username concerned:

$ cockroach sql --host gubuntu1 --user=root --certs-dir=certs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Enter password:

Authentication Mechanisms | 423

Without the CA certificate, we’re unable to connect to the server in secure mode:

$ cockroach sql --host gubuntu1 --user=root --certs-dir=certs
#
Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
ERROR: cannot load certificates.
Check your certificate settings, set --certs-dir,
 or use --insecure for insecure clusters.

If we want to allow unencrypted communications, we can specify --accept-sql-
without-tls when starting the server. This should be done only if transport-level
encryption is implemented by the underlying infrastructure.

Advanced Authentication
CockroachDB supports additional authentication mechanisms that can be used to
integrate with enterprise and third-party systems:

Single sign-on
A feature that allows a DB Console user to authenticate using an OAuth creden‐
tial, such as a Google or GitHub account. See the CockroachDB documentation
(https://cockroa.ch/3LFLpoJ) for more details.

GSSAPI
This authentication uses the Generic Security Services API to authenticate SQL
connections against Kerberos-compatible systems, such as Active Directory. To
use GSSAPI authentication, you need to use a GSSAPI-compatible Postgres client
such as the psql client distributed with PostgreSQL. For more information,
check out the CockroachDB documentation (https://cockroa.ch/3u3GcRE).

Authorization
Authorization determines the privileges granted to authenticated users.
CockroachDB uses the familiar role, privilege, and objects model for determining
the operations that an authenticated user can perform:

• Users and roles in CockroachDB are technically interchangeable, though, by•
default, roles will be configured with the NOLOGIN option, preventing a client
from directly authenticating as a role.

• Privileges can be granted to users or roles, though it’s generally easier administra‐•
tively if privileges are granted only to roles, and then users are assigned privileges
via roles.

424 | Chapter 13: Security

https://cockroa.ch/3LFLpoJ
https://cockroa.ch/3u3GcRE

• Privileges may have specific objects to which they apply. For instance, the UPDATE•
privilege must be associated with a table.

There is just one default user in CockroachDB—the root user is created automati‐
cally upon cluster creation.

Two roles are created by default: admin and public. The public role is assigned by
default to all new users and is used to control global privileges. The admin role has
access to all privileges on all objects.

Managing Users
As mentioned previously, USERs and ROLEs are mostly interchangeable. Figure 13-7
shows the syntax for creating a user or a role.

Figure 13-7. CREATE USER statement syntax

The options associated with the CREATE USER and ROLE statement represent high-level
options that cannot be assigned using GRANT statements—see Role Options (https://
cockroa.ch/4fiWt9K) for a list of these options.

Managing Privileges
The GRANT command allows privileges to be assigned to roles or users. Although
roles and users are broadly interchangeable, the best practice is to assign privileges
to roles and then roles to users. This way, privileges are grouped around workload
requirements, not against individual accounts.

Figure 13-8 shows the syntax of the GRANT statement.

Authorization | 425

https://cockroa.ch/4fiWt9K

Figure 13-8. GRANT statement syntax

The GRANT statement can assign one, some, or all privileges on one or more database
objects to one or more roles or users. Table 13-1 lists the privileges that may be used.

The WITH ADMIN OPTION clause allows for the target user to grant these privileges to
other roles or users.

426 | Chapter 13: Security

Table 13-1. Privileges that may be assigned with the GRANT statement

Privilege Description

CREATE Allows the user or role to create a database, schema, or table

DROP Allows the user or role to drop a database or table

GRANT Allows the user or role to grant privileges on a database, schema, table, or type

CONNECT Allows the user or role to connect to a database

SELECT Allows the user or role to select from a table or all tables in a database

INSERT Allows the user or role to insert into a table

DELETE Allows the user or role to delete rows in a table

UPDATE Allows the user or role to update rows in a table

USAGE Allows the user or role to use a user-defined type

ZONECONFIG Allows the user or role to change the zone configuration for a database

Fine-Grained Access Control with Views
The GRANT system allows us to grant SELECT, INSERT, UPDATE, and DELETE access
to individual tables, but they don’t provide a mechanism for granting access to
individual rows or columns. For instance, let’s say we had a table with a security level
column, like this:

defaultdb > SELECT description, security_restriction FROM documents;

 description | security_restriction
--+-----------------------
 Why CockroachDB is better than Oracle | OPEN
 Ben Darnell - the inside story | TOP SECRET
 MongoDB - plans for their destruction | SECRET

We want everybody to be able to read the “Why CockroachDB is better than Oracle”
document, and insiders can read the MongoDB destruction document, but if the
inside story of Ben Darnell got out, there would be a scandal!

We can restrict a user’s access to specific rows by creating a table containing user‐
names and security access levels:

defaultdb> SELECT * FROM document_access;
 username | security_access
-----------+------------------
 ben | TOP SECRET
 ben | SECRET
 jesse | SECRET
 root | SECRET

Authorization | 427

Then we can create a view that joins the documents table to the document_access
table and returns only rows for which the current_user has access:

defaultdb> CREATE VIEW restricted_documents_view AS
SELECT id,description,document FROM documents
 WHERE security_restriction='OPEN'
 UNION
 SELECT d.id, d.description,d.document
 FROM documents d JOIN document_access da
 ON(d.security_restriction=da.security_access)
 WHERE da.username=current_user;
CREATE VIEW

Time: 482ms total (execution 174ms / network 308ms)

defaultdb> GRANT SELECT ON document_access TO PUBLIC;
GRANT

Time: 306ms total (execution 103ms / network 203ms)

Now, unless we have TOP SECRET clearance, we can’t see those documents:

defaultdb> SELECT description FROM restricted_documents_view;
 description

 Why CockroachDB is better than Oracle
 MongoDB - plans for their destruction

Ben’s secrets are safe! Of course, you need to ensure that access to the base documents
table is restricted.

As well as restricting access to rows, a view can also restrict access to columns, either
by simply not including a column in a definition or by using a CASE statement to
mask the contents of the column if the user lacks the appropriate authorization.

Logging and Auditing
Not all cyber attacks can be prevented. Furthermore, most organizations have a
responsibility not just to stop attacks but also to be able to demonstrate that to
regulators.

CockroachDB supports logging and auditing features that allow access to data within
the database to be recorded.

CockroachDB logging is a general-purpose facility used for troubleshooting, admin‐
istration, and performance management, as well as for access security. We’ll dig into
logging in depth in the next chapter.

428 | Chapter 13: Security

Logging in CockroachDB is organized around channels. In Chapter 14, we’ll see how
to configure the verbosity, format, and destination for those channels. For now, we
will use the default logging configuration.

The SESSIONS, PRIVILEGE, USER_ADMIN, and SQL_EXEC channels can be used to get a
high-level view of user and SQL activity across all tables.

The server.auth_log.sql_connections.enabled cluster setting can be used to log
connections over the SQL channel to the server:

/defaultdb> SET CLUSTER SETTING
 server.auth_log.sql_connections.enabled = true;
SET CLUSTER SETTING

This will result in client_connection_start and client_connection_end messages
being logged to the cockroach-sql-auth.log file:

I211012 22:01:56.625060 6885 4@util/log/event_log.go:32 ⋮
 [n1,client=‹192.168.0.242:55773›]
2 ={"Timestamp":1634076116625055000,
"EventType":"client_connection_start","InstanceID":1,
"Network":"tcp","RemoteAddress":"‹192.168.0.242:55773›"}

I211012 22:02:16.542770 6885 4@util/log/event_log.go:32 ⋮
[n1,client=‹192.168.0.242:55773›,hostnossl] 3
={"Timestamp":1634076136542761000,
"EventType":"client_connection_end","InstanceID":1
"Network":"tcp","RemoteAddress":"‹192.168.0.242:55773›",
"Duration":19917706000}

This is primarily useful to track the IP addresses that are connecting to the server.
Accesses from unexpected IP addresses might indicate attacks or the need to refine
your firewall or network access rules.

The PRIVILEGE channel shows privilege changes. Cyber attacks might involve unau‐
thorized attempts to elevate privilege for nonadmin users. Here we can see that the
user guy has been given all privileges on the movr database:

 I211012 22:34:29.137386 12700 7@util/log/event_log.go:32 ⋮
 [n1,client=‹192.168.0.242:59281›,hostssl,user=root] 286
={"Timestamp":1634078069088688947,"EventType":"change_database_privilege",
"Statement":"‹GRANT ALL ON DATABASE movr TO guy›","Tag":"GRANT","User":"root",
"DescriptorID":98,"ApplicationName":
"$ cockroach sql","Grantee":"‹guy›","GrantedPrivileges":["ALL"],
"DatabaseName":"‹movr›"}

The USER_ADMIN channel logs the creation and modifications of roles. Here we see the
creation of the nefarious role has been logged:

I211012 22:40:15.472921 12700 6@util/log/event_log.go:32 ⋮
[n1,client=‹192.168.0.242:59281›,hostssl,user=root]
337 ={"Timestamp":1634078415319346771,"EventType":"create_role",

Logging and Auditing | 429

"Statement":"‹CREATE USER 'nefarious' WITH PASSWORD '*****'›",
"Tag":"CREATE ROLE","User":"root","ApplicationName":"$ cockroach sql",
"RoleName":"nefarious"}

Finally, the SQL_EXEC channel logs SQL executions into the cockroach-sql-exec.log if
the cluster setting sql.log.all_statements.enabled is true:

root@:26257/defaultdb> SET CLUSTER SETTING sql.log.all_statements.enabled = true;
SET CLUSTER SETTING

This setting creates verbose log output. However, it does provide the ability to iden‐
tify any suspicious activity. For instance, what follows is a SQL statement that appears
to be the result of SQL injection (we first looked at this SQL injection use case in
Chapter 6):

211012 22:48:34.565430 89972 9@util/log/event_log.go:32 ⋮
[n1,client=‹192.168.0.242:61454›,hostssl,user=root] 341 =
{"Timestamp":1634078914296526204,"EventType":"query_execute","Statement":
"‹SELECT u.name FROM \"\".movr.rides AS r JOIN \"\".movr.users AS u
ON (r.rider_id = u.id)
WHERE r.id = 'aaaae297-396d-4800-8000-00000001046b'
UNION SELECT credit_card FROM \"\".movr.users ORDER BY 1, name›",
"Tag":"SELECT","User":"root",
"ApplicationName":"‹DBeaver 21.1.3 - SQLEditor <Console>›",
"ExecMode":"exec","NumRows":1001,
"Age":458.3223,"FullTableScan":true,"FullIndexScan":true,
"TxnCounter":12}

All of these logging options are system-wide; in particular, the SQL_EXEC channel will
log all SQL statements, regardless of the target object or the type of operation.

The EXPERIEMENTAL_AUDIT clause allows you to track SQL operations against selected
tables for either read or write operations—you can think of it as a more targeted
variant of the SQL_EXEC channel.

For instance, we track read and write operations against the movr.users table in the
following way:

root@:26257/defaultdb> ALTER TABLE movr.users EXPERIMENTAL_AUDIT SET READ WRITE;
ALTER TABLE

Time: 758ms total (execution 140ms / network 618ms)

Any operations that read from or write to movr.users will be logged to the cockroach-
sql-audit.log file (or wherever the SENSITIVE_ACCESS channel is directed):

I211012 23:05:06.816793 89972 8@util/log/event_log.go:32 ⋮
[n1,client=‹192.168.0.242:61454›,hostssl,user=root]
3 ={"Timestamp":1634079906720036907,
"EventType":"sensitive_table_access",
"Statement":"‹SELECT u.name FROM \"\".movr.rides AS r

430 | Chapter 13: Security

JOIN \"\".movr.users AS u ON (r.rider_id = u.id)
 WHERE r.id = 'aaaae297-396d-4800-8000-00000001046b'
 UNION
SELECT credit_card FROM \"\".movr.users ORDER BY 1, name›",
"Tag":"SELECT","User":"root",
"DescriptorID":99,
"ApplicationName":"‹DBeaver 21.1.3 - SQLEditor <Console>›",
"ExecMode":"exec","NumRows":1001,
"Age":96.941925,"FullTableScan":true,"FullIndexScan":true,
"TxnCounter":18,"TableName":"‹movr.public.users›","AccessMode":"r"}

Note that the format for the SENSITIVE_ACCESS channel is the same as for the
SQL_EXEC channel.

Security Best Practices
We’ve seen that CockroachDB supports a variety of industrial-strength security meas‐
ures that are intended to protect your data from unauthorized access. Let’s sum up
how we would normally use these features in practice:

• Production CockroachDB clusters will normally be protected from public access•
by firewall and network security rules. We will normally restrict the IP addresses
that are authorized to connect to those associated with the application and with
authorized administrators. The methods for doing this vary depending on your
deployment pattern, but all deployment options allow for the restriction of IP
addresses.

• Traffic between clients and the CockroachDB server should be encrypted using•
TLS certificates. These certificates may be self-signed when CockroachDB is
running in a trusted environment, but ideally we would expect a CA-signed
certificate to be used that can definitively identify the CockroachDB server to
prevent man-in-the-middle attacks.

• Optionally, we can encrypt the CockroachDB data files to prevent an attacker•
who gains access to a CockroachDB server from accessing data directly in the
data files.

• Clients should authenticate themselves to the server using client certificates.•
Password-based authentication is also available, but since passwords may be
brute-forced, certificate authentication is preferred.

• Access to table data should be configured using users, ROLES, and GRANTS. Roles•
should be constructed that represent various job descriptions and application
roles. Login accounts (users) can be associated with the roles, and the roles may
be granted appropriate access to appropriate tables.

• Alternatively, we can use views to implement columnar or row-based access to•
table data.

Security Best Practices | 431

• Logging and auditing can be used to ensure that a record of access is preserved,•
and these logs can be used for forensic purposes should unauthorized access be
suspected.

Summary
In this chapter, we’ve examined the mechanisms provided by CockroachDB for pro‐
tecting your database from unauthorized access. Cybersecurity is a major focus for
all large organizations, and protecting your database from attack should be a primary
consideration for CockroachDB administrators.

CockroachDB supports the following security features:

• Firewalls and network security groups can be used to prevent access to the cluster•
from unauthorized IP addresses.

• Communications between clients and servers can be encrypted using TLS.•
• Data can be encrypted at rest.•
• Clients can be authenticated using client certificates and/or passwords.•
• Access to specific operations on specific database objects can be restricted using•

roles and grants.
• CockroachDB can log a variety of activities providing an audit trail to ensure that•

no unauthorized activity has occurred or for forensic purposes in the event of a
breach.

In the next chapter, you’ll learn how to monitor cluster health, performance metrics,
and resource utilization using both built-in tools and popular monitoring solutions.
You’ll also learn how to create and manage CockroachDB clusters via the Cloud and
Cluster APIs.

432 | Chapter 13: Security

CHAPTER 14

Administration and Troubleshooting

In previous chapters, we’ve shown you how to design and implement applications for
the CockroachDB platform and how to create a CockroachDB deployment either in a
fully managed CockroachDB Cloud or in a self-hosted implementation on your own
hardware or in a public cloud.

Now that you have your CockroachDB application implemented and your
CockroachDB cluster in place, it’s time to consider the day-to-day administration
and configuration tasks that are required to keep a CockroachDB deployment healthy
and happy.

We’ll leave one of the most significant tasks—cluster optimization—to the final chap‐
ter, because that topic is deep enough to require its own chapter.

Note that while a lot of these tasks are required only for self-hosted deployments,
even a CockroachDB Cloud cluster does require some care and attention. Choosing
a CockroachDB Cloud option reduces your administration overhead dramatically;
however, there still are some troubleshooting and configuration tasks, which we’ll
cover in this chapter.

Monitoring
Production systems require some form of monitoring software that makes sure that
the system is healthy and responsive and which collects performance and utilization
metrics for longer-term planning. Without a monitoring system, you may not know
if your database has stopped responding to requests. Furthermore, you might be
unable to detect slow-moving performance or capacity problems. With a good mon‐
itoring system, you would be immediately notified if the database fails or has a
problem that requires attention. You’ll have in your possession metrics allowing you
to predict resource requirements for the future.

433

End-to-End Monitoring
When monitoring a database server, it’s important to realize that the ultimate measure
of health is application-dependent. It doesn’t matter how many internal database met‐
rics apparently report healthy status if an application cannot connect to that database
or if a simple request times out for some reason. For this reason, CockroachDB
database monitoring is usually coupled with monitoring of the application health.

For example, a simple database availability monitor might check that the database
responds to a simple SQL request. However, the key transactions for an application
might need to perform complex SQL queries that potentially need to access ranges
located in multiple nodes. Consequently, to be certain that the database is providing
the services that the application needs, it is usually necessary to send some equivalent
of application-level requests.

A good monitoring solution will support both detection and diagnostic capabilities:

• The monitoring system will detect problems and will notify the appropriate•
person of that problem.

• The monitoring system will collect enough information to allow the administra‐•
tor to determine the root cause of the problem.

The monitoring system might also offer resolution tools to help with the correction
of problems and predictive capabilities that can predict an incipient problem before it
occurs.

CockroachDB Cloud Advanced Alerts
CockroachDB Advanced clusters can send email alerts when certain utilization
thresholds are exceeded. These can be enabled on the Alerts page of the cluster
dashboard (Figure 14-1).

These alerts generally suggest that your cluster is approaching its capacity. You may
respond by reducing demand through workload tuning (as discussed in Chapter 8
and elsewhere) or by scaling your cluster.

434 | Chapter 14: Administration and Troubleshooting

Figure 14-1. Configuring CockroachDB Advanced alerts

CockroachDB Cloud Standard Alerts
For CockroachDB Cloud Standard clusters, all Console Admins will automatically
receive email alerts when their clusters reach 90% of their provisioned capacity.

You can react to these alerts by either increasing your provisioned capacity to avoid
a performance degradation when resource throttling kicks in, or by tuning your
workload to reduce demand—for instance, by tuning SQL as outlined in Chapter 8.

CockroachDB Cloud Basic Alerts
For CockroachDB Cloud Basic clusters, emails will be sent to organization adminis‐
trators when:

• Their RU consumption reaches one of three thresholds: 50%, 75%, or 100%•
• Their storage consumption reaches one of three thresholds: 50%, 75%, or 100%•

Monitoring | 435

In response to these alerts, you can increase your RU and/or storage limits accord‐
ingly to prevent your cluster from being throttled or becoming unavailable.

Availability Monitoring
As we noted earlier, the most important measure of availability is application-specific.
The database is not truly available unless the application can connect using the
authentication mechanisms specific to the application and can issue the sort of
requests that implement application logic. Therefore, a well-architected application
will implement its own database monitoring and report if there are any issues
connecting to the database. That application-level database monitoring should be
the primary indicator of database health.

However, the CockroachDB system also contains a set of HTTP endpoints that can be
used to determine if the cluster “thinks” it is healthy. These endpoints are available in
all contexts other than for serverless clusters.

The health endpoint implements a simple database ping. This performs a very basic
health check of the server process. A server that is repeatedly unhealthy according to
this endpoint should be terminated and restarted. If it succeeds, it returns an empty
payload:

$ curl https://admin-zesty-camel-7hp.cockroachlabs.cloud:8080/health
{

}

If you want to check a host that is using self-signed certificates, add the –-insecure
flag:

$ curl --insecure https://gubuntu1.local:8080/health
{

}%

Any failure in that HTTP request indicates that the database HTTP server is unable
to respond to even the simplest request.

An HTTP readiness check verifies that nodes are ready to receive SQL requests. As
before, an empty return indicates success:

$ curl https://admin-zesty-camel-7hp.cockroachlabs.cloud:8080/health\?ready\=1
{

}%

Here’s an example of a failure response:

$ curl --insecure https://gubuntu1.local:8080/health\?ready\=1
{
 "error": "node is not healthy",

436 | Chapter 14: Administration and Troubleshooting

 "code": 14,
 "message": "node is not healthy",
 "details": [
]
}%

The Cloud API
The Cloud API is a secure REST API that allows administrators to programmatically
manage their CockroachDB Cloud organization and clusters. The Cloud API is what
powers the CockroachDB Terraform provider, and it’s possible to use the API directly.
In this section we’ll dive into the Cloud API and how you can harness it to manage
your organization and clusters.

Before we start, we’ll need to create a service account and generate an API key.
In your CockroachDB Cloud console, visit Organization > Access Management >
Service Accounts and click “Create”. Give your service account a name, an optional
description, then copy the API key that gets generated for you and keep it some‐
where safe. We’ve exported our API key to an environment variable called EXAM
PLE_API_KEY, which we’ll be using throughout this section.

By default, the account won’t have access to perform any actions. From the list of
service accounts, find your new account and click on the Action button, then Edit
Roles. We’ll be creating clusters, so we’ll need to add the Cluster Administration role
at the Organization level.

Service account roles should follow the principle of least privilege,
whereby a service account only has just enough permissions to
perform the actions required of it. Roles can either be granted at
the Organization or Cluster level, with an Organization-level role
having broad access across all clusters.

With the account created and permissions granted, we’re ready to start creating
clusters via the Cloud API!

Let’s start with a Basic cluster. The following API request creates a Basic cluster across
three AWS regions, with a monthly request unit limit of 10,000,000 and a storage
capacity of 1 GiB:

curl -s https://cockroachlabs.cloud/api/v1/clusters \
 -X POST \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "aws-basic",
 "provider": "AWS",
 "plan": "basic",

Monitoring | 437

 "spec": {
 "serverless": {
 "regions": [
 "us-east-1",
 "eu-central-1",
 "ap-southeast-1"
],
 "primary_region": "eu-central-1",
 "usage_limits": {
 "request_unit_limit": 10000000,
 "storage_mib_limit": 1024
 }
 }
 }
 }'

Within a few seconds our cluster will be available. Our cluster has an ID of “00cef904-
b34e-40ab-98c7-6a0f932dbe37” and we’ll use that when adding a SQL user:

curl -s https://cockroachlabs.cloud/api/v1/clusters/00ce...be37/sql-users \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "rob",
 "password": "MH75t5fP94AsfGjPGS4KJPUi7I"
 }'

To scale the cluster, we can simply alter the usage_limits with a PATCH request.
In the following request, we scale the cluster from 10,000,000 monthly Request Units
and 1 GiB storage to 20,000,000 monthly RUs and 2 GiB storage:

curl -X PATCH -s https://cockroachlabs.cloud/api/v1/clusters/00cef904-b34e-... \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 -d '{
 "serverless": {
 "usage_limits": {
 "request_unit_limit": 20000000,
 "storage_mib_limit": 2048
 }
 }
 }'

If after creating a Basic cluster you decide that your cluster would benefit from
provisioned capacity, you can convert your Basic cluster to a Standard cluster as
follows:

curl -s https://cockroachlabs.cloud/api/v1/clusters/00cef904-b34e-... \
 -X PATCH \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 -d '{
 "plan": "STANDARD",
 "serverless": {

438 | Chapter 14: Administration and Troubleshooting

 "usage_limits": {
 "provisioned_virtual_cpus": 4
 }
 }
 }'

The cluster will now have access to 4 vCPUs at all times, rather than a monthly RU
limit of 20,000,000.

Let’s create a Standard cluster now. The request is identical to that of the Basic cluster,
with the exception of the usage_limits field, which takes the number of provisioned
vCPUs our cluster will have access to, rather than a monthly request limit and storage
capacity:

curl -s https://cockroachlabs.cloud/api/v1/clusters \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 -H "Content-Type: application/json" \
 -d '{
 "name": "gcp-standard",
 "provider": "GCP",
 "plan": "standard",
 "spec": {
 "serverless": {
 "regions": [
 "us-east1",
 "europe-west1",
 "asia-southeast1"
],
 "primary_region": "europe-west1",
 "usage_limits": {
 "provisioned_virtual_cpus": 2
 }
 }
 }
 }'

As with the Basic cluster, we can scale our Standard cluster with a PATCH request.
The following request scales the cluster from two provisioned vCPUs to four:

curl -s https://cockroachlabs.cloud/api/v1/clusters/f05abd8d-0a3d-478c-... \
 -X PATCH \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 -H "Content-Type: application/json" \
 -d '{
 "serverless": {
 "usage_limits": {
 "provisioned_virtual_cpus": 4
 }
 }
 }'

Monitoring | 439

Finally, we’ll create an Advanced cluster. The following request will create an
Advanced cluster across 3 regions, each with 3 nodes and each of those nodes having
4 vCPUs and 10 GiB of storage:

curl -s https://cockroachlabs.cloud/api/v1/clusters \
-H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
-d '{
 "name": "azure-advanced",
 "provider": "AZURE",
 "plan": "advanced",
 "spec": {
 "dedicated": {
 "hardware": {
 "machine_spec": {
 "num_virtual_cpus": 4,
 "storage_gib": 10
 }
 },
 "region_nodes": {
 "eastus": 3,
 "uksouth": 3,
 "southeastasia": 3
 }
 }
 }
 }'

As with all clusters, once created, our Advanced cluster can be modified with PATCH
requests. For example, if we’d like to scale the cluster from three nodes in each region
to five, we’d use the following request:

curl -X PATCH \
-s https://cockroachlabs.cloud/api/v1/clusters/6390c2a1-5f92-4190-b019-... \
-H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
-d '{
 "dedicated": {
 "region_nodes": {
 "eastus": 5,
 "uksouth": 5,
 "southeastasia": 5
 }
 }
}'

Finally, we can use the Cloud API to list the clusters we’ve created:

curl -s https://cockroachlabs.cloud/api/v1/clusters \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 | jq '.clusters[] | "\(.name) - \(.id)"'

440 | Chapter 14: Administration and Troubleshooting

"aws-basic - 00cef904-b34e-40ab-98c7-6a0f932dbe37"
"azure-advanced - 6390c2a1-5f92-4190-b019-fd4de7d4712f"
"gcp-standard - f05abd8d-0a3d-478c-921e-e8dd557d756f"

We’ll wrap up by deleting the clusters we created with a DELETE request against the
Cloud API:

Delete the aws-basic cluster.
curl -s -X DELETE \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 https://cockroachlabs.cloud/api/v1/clusters/00cef904-b34e-40ab-98c7-6a0f...

Delete the gcp-standard cluster.
curl -s -X DELETE \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 https://cockroachlabs.cloud/api/v1/clusters/f05abd8d-0a3d-478c-921e-e8dd...

Delete the azure-advanced cluster.
curl -s -X DELETE \
 -H "Authorization: Bearer ${EXAMPLE_API_KEY}" \
 https://cockroachlabs.cloud/api/v1/clusters/6390c2a1-5f92-4190-b019-fd4d...

The Cluster API
The cluster API is a secure REST API that allows monitoring tools—either third-
party or homegrown—to interrogate a CockroachDB cluster. The API requires that
you first retrieve a token for authentication purposes. Here we connect to a cluster,
providing the username and password (same as we would provide when logging on
to the console) and supplying the location of the CA certificate for that cluster:

$ curl https://gubuntu1.local:8080/api/v2/login/ \
 -d "username=guy&password=xxxxxxx" \
 -H 'Content-Type: application/x-www-form-urlencoded' \
 --cacert $HOME/cockroach/certs/ca.crt

{"session":"CIGAhIHnq53gCRIQVNCsD2E1HFc4cAYbhbuYjQ=="}%

Now that we have the token, we can use it to retrieve a variety of information. Let’s
get the status of each node:

$ curl 'https:/gubuntu1.local:8080/api/v2/nodes/' \
 --cacert $HOME/cockroach/certs/ca.crt \
 -H 'X-Cockroach-API-Session:CIGAhJ7p153gCRIQvCerkilIMUfjcS1M/uJHmA==' \
 | jq

{
 "nodes": [
 {
 "node_id": 1,

Monitoring | 441

 "address": {
 "network_field": "tcp",
 "address_field": "gubuntu1.local:26257"
 },
 "attrs": {},
 "locality": {
 "tiers": [
 {
 "key": "region",
 "value": "us-east-1"
 },
 {
 "key": "zone",
 "value": "us-east-1a"
 }
]
 },
 "ServerVersion": {
 "major_val": 21,
 "minor_val": 1,
 ...

The cluster API supports a wide variety of endpoints. Table 14-1 lists a few of the
most useful.

Table 14-1. CockroachDB cluster API endpoints

Endpoint Name Description
/health Check node health Determine if the node is running and ready to accept SQL connections.

/nodes List nodes Get details on all nodes in the cluster, including node IDs, software versions, and
hardware.

/nodes/
{node_id}/ranges

List node ranges For a specified node, get details on the ranges that it hosts.

/ranges/hot List hot ranges Get information on ranges receiving a high number of reads or writes.

/ranges/
{range_id}

Get range details Get detailed technical information on a range. Typically used by Cockroach Labs
engineers.

/sessions List sessions Get SQL session details of all current users or a specified user.

/login Log in Authenticate as a SQL role that is a member of the admin role to retrieve a session
token to use with further API calls.

/logout Log out Invalidate the session token.

Complete Cluster API documentation can be found in the CockroachDB
documentation (https://cockroa.ch/3DFEGIL).

442 | Chapter 14: Administration and Troubleshooting

https://cockroa.ch/3DFEGIL
https://cockroa.ch/3DFEGIL

Monitoring and Alerting with Prometheus
Some sites will use the Cluster API to integrate CockroachDB monitoring into a
customized alerting and monitoring framework. However, even more, we will use
CockroachDB with an existing monitoring and alerting tool. Let’s look quickly at how
to integrate with a few of the most popular options.

Prometheus is probably the most widely used open source tool for monitoring time-
series data. It’s often used together with Grafana for data visualization.

CockroachDB provides Prometheus configuration files. We first download the files:

$ wget https://cockroa.ch/prometheus_yml -O prometheus.yml

2021-10-18 11:20:34 (12.7 MB/s)—‘prometheus.yml’ saved [746/746]

$ mkdir rules
$ wget https://cockroa.ch/aggregation_rules_yml -O rules/aggregation.rules.yml

2021-10-18 11:25:25 (20.3 MB/s)—‘rules/aggregation.rules.yml’ saved [5653/5653]

$ wget https://cockroa.ch/alerts_rules_yml -O rules/alerts.rules.yml

2021-10-18 11:25:33 (29.0 MB/s)—‘rules/alerts.rules.yml’ saved [7234/7234]

Edit the targets section of the Prometheus.yml file to list the nodes in your cluster:

static_configs:
 —targets: ['gubuntu1.local:8080,gubuntu2.local:8080,gubuntu3.local:8080']
 labels:
 cluster: 'my-cockroachdb-cluster'

You might also need to modify the rule_files section if you have placed the rules
file in a different directory and change the scheme and tls_config if you have a
secure cluster.

Once everything is running, you can start Prometheus:

$ prometheus --config.file=prometheus.yml
…
level=info ts=2021-10-18T00:29:18.516Z caller=main.go:794
msg="Server is ready to receive web requests."

Go to the Prometheus dashboard at localhost:9090, and check out the Status/Tar‐
gets page. You should see the status of each of your nodes, as shown in Figure 14-2.

The Prometheus AlertManager tool (https://cockroa.ch/3u7uXYw) can be used to
forward alerts to email addresses, Slack, WeChat, and even—if you’re still living in
the 1990s—pagers. AlertManager also handles deduplication, acknowledgments, and
other aspects of a production alerting system.

Monitoring | 443

https://cockroa.ch/3u7uXYw

Figure 14-2. Prometheus Status/Targets page

Grafana (https://grafana.com) is an open source visualization tool that is well inte‐
grated with Prometheus. Using Grafana, you can create custom dashboards that
help visualize the data collected by Prometheus from the CockroachDB server.
The CockroachDB team maintains a starter Grafana dashboard (https://cockroa.ch/
3DF6Gfh), though the monitoring screens provided by the DB Console are generally
preferred for diagnostic purposes.

The Cockroach documentation (https://cockroa.ch/3x3Bq8D) contains more informa‐
tion about integrating CockroachDB with Prometheus and Grafana.

By default, the CockroachDB rules will generate alerts when instability in the cluster
is detected, when resource utilization is approaching capacity, and when certificate
expiration is imminent.

The Metrics Export Endpoint
CockroachDB Cloud Standard and Advanced clusters can directly expose AWS
CloudWatch, Azure Monitor, Datadog, and Prometheus metrics. The process of
enabling these metrics is straightforward and involves a single request to the Cloud
API.

In this example, we’ll export Prometheus metrics from a CockroachDB Cloud Stan‐
dard cluster with the cluster ID “fe4d43ad-dabe-4b81-8312-2e629aac444f ”, which is a
Standard cluster we’re running in AWS eu-central-1.

444 | Chapter 14: Administration and Troubleshooting

https://grafana.com
https://cockroa.ch/3DF6Gfh
https://cockroa.ch/3x3Bq8D

First, create a cURL request, replacing the cluster ID we’re using with that of your
Standard or Advanced cluster:

curl -s -X POST \
 -H "Authorization: Bearer ${COCKROACH_API_KEY}" \
 https://cockroachlabs.cloud/api/v1/clusters/fe4d43a.../metricexport/prometheus

The endpoint takes a short while to become available. You can check on the enable‐
ment progress with the Cloud API as follows:

curl -s -X GET \
 -H "Authorization: Bearer ${COCKROACH_API_KEY}" \
 https://cockroachlabs.cloud/api/v1/clusters/fe4d43a.../metricexport/prometheus

Once enabled, the metrics endpoint will be available to scrape. In our
case /metricsexport/prometheus/REGION/scrape, where REGION can be substituted
for the region(s) your cluster is running in (e.g., .../eu-central-1/scrape for
metrics from the Frankfurt region or .../us-east-1/scrape for metrics from the
Northern Virginia region). Let’s make another Cloud API request to scrape our newly
available Prometheus metrics:

curl -s -X GET \
 -H "Authorization: Bearer ${COCKROACH_API_KEY}" \
 https://cockroachlabs.cloud/api/v1/clusters/fe4d43a.../\
 metricexport/prometheus/eu-central-1/scrape

HELP crdb_cloud_changefeed_backfill_count Number of changefeeds currently ...
TYPE crdb_cloud_changefeed_backfill_count gauge
...

Monitoring and Alerting with Datadog
While Prometheus is the most widely used open source monitoring solution, com‐
mercial products such as Datadog are widely deployed in the enterprise.

CockroachDB monitoring is integrated within the base Datadog distribution. After
installing the Datadog agent on a CockroachDB node, find the cockroach.d directory
with your datadog-agent/conf.d directory (typically located in /etc/datadog-agent or
~/.datadog-agent directories).

Rename the conf.yaml.example file in that directory to conf.yaml. Then edit the
conf.yaml file so that your Prometheus endpoint is pointing to the members of your
cluster:

instances:

 —prometheus_url: http://gubuntu1.local:8080/_status/vars
 tls_ca_cert: /Users/guyharrison/cockroach/certs/ca.crt

Monitoring | 445

The configuration file also supports some advanced options, such as the collection
of logs and advanced authentication options. See the CockroachDB documentation
(https://cockroa.ch/3qXEXBu) for more information.

Figure 14-3 shows the default Datadog CockroachDB dashboard. The Datadog sys‐
tem can integrate with an alerting system, custom dashboard creation, and data from
many other sources, such as OS and cloud platforms. See the Datadog documentation
(https://docs.datadoghq.com) for more details.

Figure 14-3. Datadog CockroachDB integration

Log Configuration
Logging is one of the most important diagnostic resources provided by
CockroachDB. CockroachDB logs are organized by channel. Each channel can have
its own verbosity setting and can be directed to separate logfiles or other “sinks.” In
particular, logs can be directed to Fluentd-compatible log servers rather than, or in
addition to, file destinations.

446 | Chapter 14: Administration and Troubleshooting

https://cockroa.ch/3qXEXBu
https://docs.datadoghq.com

Logging configuration is controlled by a YAML file that can be provided on startup to
the CockroachDB server by the –log-config-file flag. We might include a reference
to our log configuration file in the startup command in our CockroachDB service:

ExecStart=/usr/local/bin/cockroach start --certs-dir=certs
 --advertise-addr=gubuntu1.local
 --join=gubuntu1.local,gubuntu2.local,gubuntu3.local
 --locality=region=us-east-1,zone=us-east-1a
 --log-config-file=log-config.yaml

The YAML file has four sections:

file-defaults

Defines the defaults inherited by all file sinks.

fluent-defaults

Defines the defaults inherited by all Fluentd sinks.

sinks

Defines the specific sinks that are configured, the channels to which they are
associated, and any overrides on those sinks.

capture-stray-errors

Defines what happens to outputs that are not specifically assigned to a channel.
This would include stack traces and other “panicky” outputs from CockroachDB.

The cockroach debug check-log-config command returns a summary of the cur‐
rent configuration and a URL to a graphical visualization of the current config:

cockroachdb@gubuntu1:~$ cockroach debug check-log-config
configuration after validation:
file-defaults:
 dir: /home/cockroachdb/cockroach-data/logs
 max-file-size: 10MiB
 max-group-size: 100MiB
 buffered-writes: true
 filter: INFO
 format: crdb-v2
 redact: false
 redactable: true
 exit-on-error: true
 auditable: false
…
graphical diagram URL:
http://www.plantuml.com/plantuml/uml/X9H1Zzem48NlyokidDf3oX88xFPG

Figure 14-4 shows the visualization that is provided for a default log configuration.

Log Configuration | 447

Figure 14-4. Summary of log configuration provided by the cockroach debug check-
log-config command

448 | Chapter 14: Administration and Troubleshooting

Log Channels
CockroachDB log messages are directed to several channels (Table 14-2). These
channels can have independent settings for verbosity, format, destination, and so on.

Table 14-2. CockroachDB logging channels

Channel Description

DEV The DEV channel is used during development to collect log details useful for troubleshooting that fall
outside the scope of other channels. It is also the default logging channel for events not associated
with a channel.

OPS The OPS channel is used to report “point” operational events initiated by user operators or
automation. This includes startup and shutdown events, node additions, removals, decommissions, etc.

HEALTH The HEALTH channel is used to report “background” operational events initiated by CockroachDB or
reporting on automatic processes.

STORAGE The STORAGE channel is used to report low-level storage layer events.

SESSIONS The SESSIONS channel is used to report connection and authentication events and is
enabled by the cluster settings server.auth_log.sql_connections.enabled and/or
server.auth_log.sql_sessions.enabled.

SQL_SCHEMA The SQL_SCHEMA channel is used to report changes to the SQL schema objects, other than
privilege and ownership changes (which are reported separately on the PRIVILEGES channel) and zone
configuration changes (which go to the OPS channel).

USER_ADMIN The USER_ADMIN channel is used to report changes in users and roles.

PRIVILEGES The PRIVILEGES channel is used to report data authorization changes.

SENSITIVE
_ACCESS

The SENSITIVE_ACCESS channel is used to report SQL data access to tables for which the
EXPERIMENTAL_AUDIT option has been provided and SQL statements are executed by users with
the admin role. We discussed this in detail in Chapter 13.

SQL_EXEC The SQL_EXEC channel is used to report SQL statement executions when enabled via the
sql.log.all_statements.enabled cluster setting.

SQL_PERF The SQL_PERF channel is used to log SQL executions that are “slow” as defined by the
cluster variable sql.log.slow_query.latency_threshold. We introduced this facility in
Chapter 8.

SQL_INTERNAL
_PERF

The SQL_INTERNAL_PERF channel is like the SQL_PERF channel but is aimed at helping
developers of CockroachDB itself.

TELEMETRY The TELEMETRY channel reports telemetry events. Telemetry events describe feature usage within
CockroachDB and anonymizes any application-specific data.

Log Configuration | 449

Log Format
The format for all logs or for individual sinks can be controlled by the format
property. Logs can be formatted in json format or crdb-v2 format (the default). The
crdb-v2 format is a traditional format that is sometimes laughably referred to as
“human-readable.” Parsing the crdb-v2 format programmatically is problematic. The
json format, on the other hand, can easily be handled by programming languages
that support JSON (which might exclude COBOL but not much else).

The crdb-v2 format lines look like this:

I211018 04:52:13.141036 195 2@server/status/runtime.go:569 ⋮ [n1] 277
runtime stats: 294 MiB RSS, 254 goroutines (stacks: 4.2 MiB), 42 MiB/81 MiB
Go alloc/total (heap fragmentation: 8.1 MiB, heap reserved: 12 MiB,
heap released: 126 MiB), 73 MiB/102 MiB CGO alloc/total (0.1 CGO/sec),
7.5/8.2 %(u/s)time, 0.0 %gc (0x), 645 KiB/879 KiB (r/w)net

We could use regular expressions or Linux file munging tools (awk, Perl, etc.) to
process this sort of output.

If the format were json, the relevant lines would look like this:

{"channel_numeric":2,"channel":"HEALTH","timestamp":"1634532949.122393871",
"cluster_id":"2cf44e30-4972-4e26bd828d05309f7b26","node_id":1,
"severity_numeric":1,"severity":"INFO","goroutine":138,
"file":"server/status/runtime.go","line":569,"entry_counter":58,
"redactable":1,"tags":{"n":"1"},"message":"runtime stats: 170 MiB RSS,
240 goroutines (stacks: 4.1 MiB), 41 MiB/60 MiB Go alloc/total
(heap fragmentation: 3.5 MiB, heap reserved:
2.3 MiB, heap released: 13 MiB), 75 MiB/94 MiB CGO alloc/total
(0.0 CGO/sec), 0.0/0.0 %(u/s)time, 0.0 %gc (0x),
 472 KiB/283 KiB (r/w)net"}

The JSON format is far easier for programs to process; there’s no need for complex
regular expressions to parse the output format. The jq command can be used to
format these messages in a way that can be easier for humans as well:

$ jq 'select (.severity=="ERROR")' <cockroach.log
{
 "channel_numeric": 0,
 "channel": "DEV",
 "timestamp": "1635309437.656563146",
 "severity_numeric": 3,
 "severity": "ERROR",
 "goroutine": 94,
 "file": "kv/kvserver/replica_write.go",
 "line": 292,
 "entry_counter": 91,
 "redactable": 0,
 "tags": {
 "n": "1",

450 | Chapter 14: Administration and Troubleshooting

 "s": "1",
 "r": "2/1:/System/NodeLiveness{-Max}"
 },
 "message": "range unavailable: have been waiting 60.00s for
proposing command RequestLease …\n"
}

Filter Levels
The filter setting controls the verbosity of the channels. By default, the filter is set
to INFO, which is the most verbose setting. Other settings, in order of decreasing
verbosity, are shown in Table 14-3.

Table 14-3. CockroachDB log filters

Filter Description

INFO The INFO severity is used for informational messages that do not require action.

WARNING The WARNING severity is used for situations that may require special handling, where normal operation is
expected to resume automatically.

ERROR The ERROR severity is used for situations that require special handling, where the normal operation could not
proceed as expected. Other operations can continue mostly unaffected.

FATAL The FATAL severity is used for situations that require an immediate, hard server shutdown. A report is also sent
to telemetry if telemetry is enabled.

Note that each filter encompasses all the higher-level filters. So if you specify INFO,
you will also receive WARNING, ERROR, and FATAL. If you specify ERROR, you will also
receive FATAL.

In this fragment of YAML, we set the default filter to WARNING, effectively eliminating
INFO messages from the log stream:

file-defaults:
 max-file-size: 10MiB
 max-group-size: 100MiB
 buffered-writes: true
 filter: WARNING
 format: json

In this fragment, we set the filter for the sql-audit-channel to INFO, overriding the
WARNING filter applied to other logs:

sql-audit:
 channels: [SENSITIVE_ACCESS]
 filter: INFO
 auditable: true

Log Configuration | 451

Log Destinations
File-based destinations can be changed by modifying the default dir value or the dir
value for a specific sink. For instance, here we direct the SENSITIVE_ACCESS channel
to the /tmp directory:

sql-audit:
 channels: [SENSITIVE_ACCESS]
 filter: INFO
 auditable: true
 redact: true
 dir: /tmp

The files are named after the name of the filegroup. For instance, in the example
shown, the filegroup name is sql-audit, and the full logfile name is cockroach-sql-
audit.gubuntu1.cockroachdb.2021-10-23T03_54_47Z.016225.log.

The full log name embeds the process ID, start time, host, and file owner in the
following format: {process}-{file group}.{host}.{user}.{start timestamp in UTC}.{process
ID}.log.

There is always a shorter symbolic link to the file that simply lists the filegroup name.
So, for instance, in the preceding example, we would find the latest SENSTIVE_ACCESS
channel log in /tmp/sql-audit.log.

Logging to Fluentd
CockroachDB can log to Fluentd-compatible network logging systems. Fluentd is an
open source general-purpose data collection engine used for real-time ingestion of
semi-structured data such as logfiles.

To configure a Fluentd sink, we simply add a fluent-servers entry to our sinks
section and specify the channels to be forwarded and the address of the Fluentd
server (xps13.local in this example):

sinks:
 fluent-servers:
 health:
 channels: [HEALTH,SENSITIVE_ACCESS]
 address: xps13.local:8888

Using a network logging destination is good practice, especially for audit logging.
Attackers frequently remove edit logs to hide evidence of their attacks. Sending the
logs to a network destination makes it harder for them to do this.

452 | Chapter 14: Administration and Troubleshooting

Redaction
The redaction flag removes any log entries that might contain sensitive information.
This pertains most significantly to SQL tracing, where personally identifiable infor‐
mation (PII) might be embedded within WHERE clauses:

sql-audit:
 channels: [SENSITIVE_ACCESS]
 filter: INFO
 auditable: true
 redact: true
 dir: /tmp

While redaction does limit the possibility of data leaking through logs, it places a
fairly significant restriction on log usefulness. For instance, as a result of the change
shown, an attempt to read from a table identified for audit logging has the entire SQL
statement removed:

"event": {
 "Timestamp": 1634970161209797400,
 "EventType": "sensitive_table_access",
 "Statement": "×",
 "Tag": "SELECT",
 "User": "root",
 "DescriptorID": 99,
 "ApplicationName": "$ cockroach sql",
 "ExecMode": "exec",
 "NumRows": 10,
 "Age": 85.1666,
 "TxnCounter": 4,
 "TableName": "×",
 "AccessMode": "r"
}

With the SQL statement removed from the log, we are now unable to determine if the
SQL statement was valid or the result of a cyber attack. Indeed, we can no longer even
identify the table involved.

Logs in Cloud Deployments
In a cloud deployment, you don’t have direct access to the log destinations.
Instead, you can retrieve the logs from the DB Console at the /_status/logs
endpoints. To access the logs, you’ll need to have the cluster configuration variable
server.remote_debugging.mode set to any. Figure 14-5 shows the DB Console logs
page.

Log Configuration | 453

Figure 14-5. Accessing logs for a cloud deployment

Cluster Management
We spent a few chapters outlining the procedure for installing a fresh cluster. Let’s
examine some of the considerations around modifying that cluster configuration.

Upgrading the Cluster Version
It’s generally advisable to upgrade your software version to ensure that you have the
latest performance, security, and availability features.

Before upgrading, carefully review the upgrade checklist on the CockroachDB web‐
site (https://cockroa.ch/3J7NJ64). While most new features in CockroachDB are Good
Things, there may be deprecated features or backward-incompatible changes that will
adversely affect your application or require some coding changes. These will typically
be listed on the CockroachDB website (https://cockroa.ch/37kuadS).

CockroachDB supports upgrades only from one major version to the next. So if you
are on version 20.1 and wish to upgrade to version 22.0, you must first upgrade to
version 21.x.

454 | Chapter 14: Administration and Troubleshooting

https://cockroa.ch/3J7NJ64
https://cockroa.ch/3J7NJ64
https://cockroa.ch/37kuadS

Preserving a Downgrade Option
By default, an upgrade will perform certain changes that cannot be undone. This
might be the result of changes to internal data structures or because some new
features might cause changes to schema objects that have no analog in previous
versions.

To make sure that a downgrade is possible, use either the cluster

.auto_upgrade.enabled or the cluster.preserve_downgrade_option setting.

If using the cluster.auto_upgrade.enabled setting (recommended after v23.2),
prior to upgrade, set it to false as follows:

SET CLUSTER SETTING cluster.auto_upgrade.enabled = false;

Perform the upgrade, and once you are content that the new version is stable and
wish to enable new features that cannot be downgraded, update the cluster’s version:

SET CLUSTER SETTING version = '24.2';

If using the cluster.preserve_downgrade_option setting, prior to upgrade, set the
cluster.preserve_downgrade_option as follows:

SET CLUSTER SETTING cluster.preserve_downgrade_option = '24.2';

When you are content that the new version is stable and wish to enable new features
that cannot be downgraded, reset the cluster setting:

RESET CLUSTER SETTING cluster.preserve_downgrade_option;

For CockroachDB Cloud Advanced cloud deployments, minor upgrades (for
instance, v21.1.0 → v21.2.1) will be performed automatically, but major upgrades
(v21 → v22, for example) can be performed from the CockroachDB Cloud console.

In CockroachDB Cloud Basic and Standard deployments, upgrades will occur auto‐
matically and transparently.

In a Kubernetes deployment, it’s simply a matter of changing the Docker image in the
YAML definition file. So, for instance, if our YAML file contained this line:

image:
 name: cockroachdb/cockroach:v21.1.7

we might change it as follows:

image:
 name: cockroachdb/cockroach:v21.2.7

then apply the changes:

kubectl apply -f example.yaml

Cluster Management | 455

In a self-hosted deployment, you have a more complex task, though it’s generally
pretty straightforward. We would normally perform a rolling upgrade in which we
upgrade each node serially. For each node in the cluster:

1. Shut down the node.1.
2. Install the new version binaries.2.
3. Restart the node.3.

After each node restart, perform appropriate checks (run some SQL statements,
check logs, visit DB Console Status page, etc.) to make sure that the upgrade is
successful before proceeding to the next node.

When all the nodes are upgraded, and if you had preserved the ability to downgrade,
you can finalize the upgrade by resetting the cluster.preserve_downgrade_option
variable. See “Preserving a Downgrade Option” on page 455 for details.

Adding Nodes to a Cluster
The procedure for adding nodes to an existing cluster is the same as the steps
involved in adding the first nodes.

In a CockroachDB Cloud Advanced deployment, this is done simply by requesting
more nodes and specifying their locations. Navigate to the cluster’s Overview page,
Click the Actions button in the top-right corner, then select “Add/remove nodes.”

In a Kubernetes deployment, we simply edit the nodes entry in the operator YAML
file and then apply the file. The operator will do the rest.

In a self-hosted cluster, we need to follow the steps outlined in Chapter 10:

1. Set up the host with appropriate kernel configuration and clock synchronization.1.
2. Create and distribute certificates to the new nodes.2.
3. Issue a cockroach start command with a --join flag pointing to three of the3.

existing nodes of the cluster.
4. Configure the load balancer to balance connection requests to the new node.4.

Once the new nodes join the cluster, data ranges will automatically be rebalanced
across the new nodes. You can observe the rebalancing in real time using the Replica‐
tion dashboard. Figure 14-6 shows an example of ranges being redistributed from a
three-node to a four-node cluster.

456 | Chapter 14: Administration and Troubleshooting

Figure 14-6. Ranges being rebalanced after a new node is added to a cluster

Check out Chapter 10 for more details on each of these activities.

Decommissioning Nodes
Removing a node from a cluster—decommissioning a node—requires that we first
migrate all range replicas to other nodes. Once that has happened, the node can
be shut down and will be removed from the cluster after it has been idle for
server.time_until_store_dead, which defaults to five minutes.

You can decommission a node only if there are other nodes available to meet replica‐
tion requirements. For instance, if your replication factor is three, then you cannot
decommission a node in a three-node cluster without first adding the fourth node.

Before decommissioning, make sure that there are no underreplicated or unavailable
ranges (this is something you should be keeping an eye on at all times!). This can be
seen from the front page of the DB Console in Figure 14-7.

Cluster Management | 457

Figure 14-7. Check that no ranges are underreplicated before decommissioning

Make sure that you will have enough capacity after removing the node(s). For
example, if you have a six-node cluster, you would not want to decommission if
your peak CPU load is above 66%. (Because 66% of a six-node cluster is 80% of
a five-node cluster, and above that point, you cannot afford to lose a single node
without disruption.)

Decommission the node by running the cockroach node decommission command
from the node to be decommissioned:

$ cockroach node decommission --self --certs-dir=/var/lib/cockroachdb/certs
 --host=gubuntu4.local

 id | is_live | replicas | is_decommissioning | membership | is_draining
-----+---------+----------+--------------------+-----------------+--------------
 4 | true | 83 | true | decommissioning | false
(1 row)

...

458 | Chapter 14: Administration and Troubleshooting

 id | is_live | replicas | is_decommissioning | membership | is_draining
-----+---------+----------+--------------------+-----------------+--------------
 4 | true | 82 | true | decommissioning | false
(1 row)

The command will report the progress of the decommissioning and—hopefully—
eventually report that all replicas have been moved:

 id | is_live | replicas | is_decommissioning | membership | is_draining
-----+---------+----------+--------------------+-----------------+--------------
 4 | true | 0 | true | decommissioning | false
(1 row)

No more data reported on target nodes. Please verify cluster health
before removing the nodes.

During the decommission, you can also check the individual node in the replication
dashboard. You should see the replicas per store for the decommissioning node
reducing—Figure 14-8 shows an example.

Figure 14-8. Ranges being rebalanced as a node is decommissioned

Cluster Management | 459

When the decommissioning process is complete, shut down the node. The node
should be removed from the cluster once server.time_until_store_dead has
passed.

Decommissioning can hang indefinitely if CockroachDB is not able to move ranges
to other nodes. In this case, you could either add another node to allow the decom‐
missioning to proceed or recommission the node. See the CockroachDB documenta‐
tion (https://cockroa.ch/3uVMBgO) for more details.

Troubleshooting
An informal survey of the CockroachDB support staff revealed that the bulk of
troubleshooting requests by CockroachDB users relate to development and coding or
to cluster performance. For instance:

• My query is taking too long; how do I improve it?•
• I have high CPU on a particular node. How do I troubleshoot that?•
• Why am I experiencing transaction retry errors?•
• How do I reduce read latency across my multiregion cluster?•

It’s good to know that CockroachDB users are generally concerned with these sorts
of issues; this indicates that, by and large, CockroachDB itself is stable and reliable,
and instead of struggling with cluster availability, users are primarily pursuing the
never-ending goal of making the database run faster.

We discussed query performance in detail back in Chapter 8, and we’ll dig deep into
cluster performance in Chapter 15. Here, we’d like to examine a few of the situations
that can cause nodes in the cluster to become unresponsive or unavailable.

With every release, the CockroachDB team resolves many issues and improves per‐
formance and stability. Each release also adds new functionality. Consequently, the
types of issues that users encounter change with every release. The CockroachDB
team maintains a “Troubleshooting Overview” (https://cockroa.ch/3DHWd2L) that
you should review if you encounter an issue not covered here.

Whatever the issue that you encounter, always do the following:

• Review the logs pertaining to the node concerned. Remember, there are multiple•
log channels, so make sure you’ve reviewed all the relevant files.

• Make sure there is free disk space in the log destination! Many a troubleshooting•
hour has been lost trying to find a problem that is not logged, only to belatedly
realize that there was no space left to write any logs.

460 | Chapter 14: Administration and Troubleshooting

https://cockroa.ch/3uVMBgO
https://cockroa.ch/3uVMBgO
https://cockroa.ch/3DHWd2L

Clock Synchronization Errors
Einstein may have demonstrated that time is relative, but for a CockroachDB cluster,
time needs to be—within reason—absolute. Any node that finds itself more than 500
ms (or the value of the startup parameter --max-offset) away from at least half of
the nodes in the cluster will remove itself. You’ll see an error something like this in
the logs:

F211023 03:31:36.974367 81 1@server/server.go:322 [n1] 10 clock
synchronization error: this node is more than 500ms away from
 at least half of the known nodes (0 of 1 are within the offset)

This almost certainly means your time synchronization is failing and that you should
review the setup of your NTP time synchronization service (see Chapter 10). Make
sure that all nodes are using the same time servers and that time synchronization is
enabled on all nodes.

If, for some reason, you can’t get tight enough time synchronization, you can increase
the --max-offset parameter to allow greater clock drift. However, changing this
parameter requires a complete cluster restart—it cannot be done using a rolling
restart.

Do not increase this parameter capriciously. In fact, lower values for multiregion
deployments are recommended (250 ms, for instance)—since it helps lower latency
for global tables.

Node Liveness
All nodes in a cluster maintain and update a node liveness record, which is shared
with other members of the cluster. Cluster members that fail to produce a timely
liveness message may be removed from the cluster. Logs would typically show an
error like this:

cockroach.gubuntu1.cockroachdb.2021-09-05T22_57_56Z.008851.log:W210905
22:58:05.686268 211 kv/kvserver/liveness/liveness.go:723 ⋮ [n1,liveness-hb]
91 failed node liveness heartbeat: ‹operation "node liveness heartbeat"
 timed out after 4.5s›: context deadline exceeded

Node liveness failures are most often the result of some other issue on the node
concerned—i.e., nonliveness is a symptom, not a cause. For instance, nonliveness
failures can be caused by:

• Running out of file descriptors or other OS limits•
• Very heavy OS contention, particularly for disk I/O•
• Network communication errors between nodes•

Troubleshooting | 461

Examine logs and monitoring data to try to determine the root cause of the problem.
The CockroachDB Console records the last liveness record in the /reports/nodes page
(see Figure 14-9). CockroachDB support can be extremely helpful when trying to
troubleshoot esoteric liveness issues.

Figure 14-9. Liveness information in the DB Console

Networking Issues
CockroachDB can handle network connectivity failures between isolated nodes, pro‐
vided that there are a majority of replicas available. Nodes that are isolated from the
cluster will show as SUSPECT and eventually DEAD on the CockroachDB Console
and will fail their liveness checks.

As in many horror movies, CockroachDB nodes can come back from the dead, but
luckily not as brain-eating zombies. As soon as network connectivity is restored, you
should expect the node to return from the dead and rapidly return to full health.

462 | Chapter 14: Administration and Troubleshooting

If half or more of the nodes of the cluster lose connectivity, or if half the replicas in
important system ranges are rendered unavailable by node failures, then the entire
cluster will be unavailable, even if some nodes are still running correctly.

For instance, consider the situation shown in Figure 14-10. Earlier in the chapter,
we added a fourth node to our three-node cluster. Now only two of those nodes
are available. On a three-node cluster, we’d have underreplicated ranges but not
unavailable ranges. However, with a four-node configuration, some ranges have two
of the three replicas on the unavailable nodes—those ranges can now not be updated,
and indeed the correct status of those ranges cannot be determined. So the cluster is
at best only partially available, but in practice, probably unresponsive (because some
of the unavailable ranges will be mandatory system ranges).

Figure 14-10. Unavailable ranges as a result of a network partition

To allow two nodes to fail, we need a replication factor of at least five, and therefore,
at least five nodes.

Troubleshooting | 463

Loss of Client Connectivity
Making sure that the nodes that constitute the cluster can communicate is an obvious
best practice. However, it’s not much good if cluster nodes are all communicating, but
client programs are failing to connect.

In an on-premises deployment, the load balancer serves as a single point of failure
for client connectivity. This is not CockroachDB software, so there’s more variation
in configuration and less direct support from the CockroachDB team. A poorly
configured load balancer might result in a complete failure of client connectivity.
There should be redundant load balancers configured, and they should be configured
to use DNS round-robin or similar configuration to ensure that client connections
can continue if one of the load balancers fails. You should monitor the state of the
load balancers just as you would monitor other components of the cluster.

Running Out of Disk Space
Although running out of free space on a disk device is an obvious failure, it’s
surprising how often it is not anticipated ahead of time and is not always easy to
resolve. When disk space is exhausted on a device, processes wanting to write to that
device will often block without any ability to signal their difficulty. If the logfiles are
being written to the same device, then CockroachDB will be unable to even log the
problem.

Resolving an out-of-space situation can also be difficult. Relatively large amounts of
space must be freed up to allow normal operations to proceed while you reconfigure
your system with more storage. This is why CockroachDB creates a “ballast file.”
The ballast file holds space in reserve and can be deleted quickly to get your system
running again—see Chapter 10. You may want to think about the best size for your
ballast file—CockroachDB defaults to 1% or 1 GB of space (whichever is smaller),
which might not be enough to maintain availability while you provision more disk.

If you don’t have a ballast file, look for large files within the device. The following
command will let you browse through the directories on a device—run it from the
top-level directory of the device:

du -k|sort -nr|less

If logfiles are being written to the device, they may be the first candidates for removal.
A long-running server with no log purging can consume a large amount of storage.

Working with CockroachDB Support Resources
If you’ve worked in database administration for more than a few days, you know
that a big part of the job is dealing with unexpected problems. It’s not possible to
anticipate everything that can go wrong in a distributed deployment, when each

464 | Chapter 14: Administration and Troubleshooting

deployment may have unique combinations of hardware, software, and topologies.
Indeed, one of the most powerful motivations for moving to a fully managed cloud
database service such as CockroachDB Cloud is to eliminate the potential problems
caused by self-hosted deployment idiosyncrasies.

Nevertheless, the CockroachDB team is ready to help you if you have any issues with
CockroachDB under any deployment scenario. You should be aware of the following
support resources and leverage them as appropriate:

• The CockroachDB documentation contains continually updated support and•
troubleshooting information (https://cockroa.ch/3JlctrX).

• CockroachDB maintains a community forum (https://cockroa.ch/4jhdqEO) and•
a Slack channel (https://cockroa.ch/4aaCMjC) where you can ask questions of
fellow users and CockroachDB support engineers.

• You can lodge an issue with CockroachDB support (https://support.cockroa•
chlabs.com).

• You can file an issue at GitHub (https://cockroa.ch/3j4JbCY) if you feel that there•
is an issue with the CockroachDB software that requires attention.

Summary
In this chapter, we’ve provided a quick overview of some of the routine tasks
encountered running a CockroachDB installation. Most of these tasks are handled
for you when you choose a CockroachDB Cloud deployment. However, a self-hosted
deployment does require some care and attention, and even a cloud deployment may
require some administration.

Monitoring your CockroachDB deployment ensures that you are aware of the health
of the system and have the necessary information required for forward planning.
CockroachDB has its own built-in monitoring via the CockroachDB Console but also
integrates with popular monitoring frameworks, such as Prometheus or Datadog.
Logs are your best friends when trying to troubleshoot any anomalous behavior.
CockroachDB logs are highly configurable, and we showed how to tailor log output
to match your requirements.

Almost all clusters will need to be upgraded as new releases of CockroachDB software
become available, so we showed how to perform a rolling upgrade of a CockroachDB
cluster. A big part of any database administrator’s job relates to handling unexpected
problems. We outlined some of the most common issues in cluster availability and
discussed how to proceed when trying to resolve issues that we can’t anticipate.

In the next chapter, we’ll explore the areas where performance optimizations can
result in real-world cost savings, tackling everything from workload optimizations to
infrastructural considerations.

Summary | 465

https://cockroa.ch/3JlctrX
https://cockroa.ch/3JlctrX
https://cockroa.ch/4jhdqEO
https://cockroa.ch/4aaCMjC
https://support.cockroachlabs.com
https://cockroa.ch/3j4JbCY

CHAPTER 15

Cluster Optimization

It doesn’t matter what database, framework, application, or device you’re responsible
for—someone always wants it to be faster. This is probably one of the most persistent
challenges for computer scientists. One can imagine after Alan Turing created his
breakthrough decoding machine during World War II that his superiors said, “Well
done Alan, but can it be faster?”

It’s not surprising that performance optimization is such a perennial activity. It’s
always been important to provide users with responsive applications and to be able
to maintain acceptable throughput for batch processes. However, in the modern era,
performance has become even more important. In the internet era, poorly perform‐
ing customer-facing applications lead to customers abandoning your online services,
directly affecting the bottom line. In the cloud era, performance optimization is cost
optimization—a poorly performing application will consume more cloud computing
resources, which will increase your monthly bill.

Tuning Versus Firefighting
Performance optimization usually occurs in one of two forms:

Performance firefighting
A critical performance problem arises and must be addressed immediately.

Performance tuning
The system is optimized systematically to improve its performance and reduce
the cost of operation.

The more performance tuning you do, the less performance firefighting you’ll need to
undertake. Nevertheless, for almost all database administrators, you’ll need to know
how to function in both modes.

467

In firefighting mode, you’re typically trying to find something that has “gone wrong”
—this might be a new SQL statement or transaction that is creating a drag on the
cluster, a hardware or node failure, or a performance problem caused by a change in
application load.

In tuning mode, you are systematically working through the layers of the database
cluster and making sure that workloads are optimized and that software and hard‐
ware components are correctly configured. It’s generally best in tuning to work
“down” through the layers of the database stack. Way back in Chapter 2, we intro‐
duced these layers; Figure 15-1 summarizes these levels.

Figure 15-1. CockroachDB software layers

The load on each layer is determined by the configuration of the layer above. There‐
fore, there’s no point in tuning a lower layer until you have completed tuning the
higher layer. For instance, there’s no point looking at increasing the sizes of your
nodes unless you have made sure that you have all the necessary indexes. Adding an
index is a simple and quick activity that requires no downtime or additional cost.

468 | Chapter 15: Cluster Optimization

Depending on your configuration, adding nodes to an existing cluster might be a
time-consuming and expensive process.

Therefore, in this chapter, we’ll work through the layers of the application when
discussing cluster optimization. Even when firefighting, it makes sense to look at each
layer of the cluster in turn, because a lot of problems that require firefighting involve
changes to workload, which is the highest layer.

Workload Optimization
By far, the biggest influence on cluster performance is the workload that the applica‐
tion generates. Poorly tuned SQL can generate orders of magnitude higher logical
and physical resource demands than well-tuned SQL. In particular, without effective
indexing, it’s unlikely that any workload will be scalable and optimized.

We devoted Chapter 5 to the design of a performant database schema, Chapter 6 to
effective application implementation, and Chapter 8 to SQL tuning. In an ideal world,
applications would arrive perfectly tuned before encountering production. In the
real world, untuned SQL statements, unexpected data distributions, and higher than
expected contention scenarios often lead to application tuning issues only becoming
apparent in the production system.

During application development, the tuning process involves ensuring that individ‐
ual SQL statements and transactions are optimized and correct. In production, the
tuning process is somewhat different—we are looking for SQL statements and trans‐
actions that appear to be consuming a higher than expected proportion of system
resources and looking for ways that these might be resolved.

Detecting Problem Workloads
When faced with a database that is “slow,” we generally look first at the workload
on the system. After all, “slowness” for a database probably relates to one or more
SQL statements that are performing below expectations, so we might first want to
find those SQL statements. Secondly, a typical cause of poor performance is the
introduction of a new or unique SQL statement that is causing problems.

What Is Slow?
The end consumers of database servers are rarely concerned with the performance
of individual SQL statements as such. They are far more concerned with the per‐
formance of mission-critical transactions performed by the SQL layer. These trans‐
actions generally perform SQL operations but often also execute web services or
CPU-intensive logic. A “slow” application can therefore be slow as a result of a slow

Workload Optimization | 469

database but could also be slow due to application layer code inefficiency, network
latency, or a variety of other issues.

Where possible, application logging or instrumentation should be able to distinguish
between slow database response and other causes of poor performance. Unfortu‐
nately, this is not always true, and all too often, managing application performance
involves a lot of finger-pointing and trial-and-error tuning at multiple levels.

The best way to avoid these issues is to implement application monitoring and instru‐
mentation that can at least break down response time between database requests and
other sources.

The CockroachDB Console is usually the first port of call when trying to examine
workload. On the Monitoring > SQL Activity page, you’ll be able to inspect SQL
statements, transactions, and sessions to highlight things like slow-running queries,
high contention, and busy clients. Each of these pages provides the ability to drill
down, giving you deeper insights into the performance of your cluster.

Another way to inspect currently executing queries is by querying the system
.crdb_internal.cluster_queries table:

defaultdb> \set display_format=records

defaultdb>
SELECT node_id, current_timestamp AT time ZONE 'UTC'- START run_time,
 user_name, QUERY, phase
 FROM SYSTEM.crdb_internal.cluster_queries
 ORDER BY START
LIMIT 10;

-[RECORD 1]
node_id | 1
run_time | 00:02:06.264411
user_name | root
query | SELECT v.type, u.city, sum(r.revenue)
 FROM rides AS r JOIN vehicles AS v
 ON ((r.vehicle_city = v.city)
 AND (r.vehicle_id = v.id))
 JOIN users AS u ON (u.id = r.rider_id)
 GROUP BY v.type, u.city ORDER BY 3 DESC
phase | executing

If you find an anomalous SQL statement is causing a drag on the cluster, then you do
have the option to kill it, either by using the “Cancel query” button on the statements
page or the “Cancel query” or “Cancel session” statements. However, be careful
with these options. Generally, we only cancel SQL statements that are ad hoc—SQL
statements that have been directly issued by a human being using the SQL prompt
or from a business intelligence tool such as Tableau. Canceling a query that is being

470 | Chapter 15: Cluster Optimization

run programmatically may lead to unpredictable application behavior and might even
make things worse if the application retries the failed statement. If possible (and
it’s not always possible), try to terminate the application process that is running the
problem SQL.

While long-running SQL statements that are currently executing are often a problem,
just as often it’s the frequently running SQL statements at high volumes that domi‐
nate the workload. To see performance statistics aggregated for each SQL, we can
use the Monitoring > SQL Activity > Statements page of the CockroachDB Console.
Drilling into a statement, let’s see the full SQL text (with query arguments redacted),
along with planning and execution durations and resources consumed by the query.
The execution plan is always available, giving you the full benefits of EXPLAIN from
within the UI.

We can sort the DB Console Statements page by absolute time, contention time,
network time, or rows processed. If we find that one statement is dominating overall
execution time or has high contention, we will move into tuning the SQL using the
techniques from Chapter 8. (We’ll recap these in a moment.)

You can use the crdb_internal.node_statement_statistics table to look at state‐
ments executed on a particular node. This table lets you hunt for statements matching
various criteria, including text matches for the SQL:

defaultdb> \set display_format=records
defaultdb>
SELECT KEY, count, service_lat_avg,
 count::float * service_lat_avg sum_service
 FROM crdb_internal.node_statement_statistics
 ORDER BY count::float * service_lat_avg DESC
 LIMIT 10;

-[RECORD 1]
key | SELECT sum(revenue) AS revenue
 FROM rides AS r JOIN users AS u ON (u.id = r.rider_id)
 WHERE (u.name = $1) AND (u.address = $2)
count | 48
service_lat_avg | 12.680283943604165
sum_service | 608.6536292929999

When dealing with transaction contention-related issues, it can be advantageous to
focus on transactions that are experiencing retries or high contention times. The
Monitoring > SQL Activity > Transactions page on the DB Console can do this.
You can sort the transactions by each metric to identify the culprit. Drilling into the
transaction shows all of the SQL statements in the transaction together with retry
counts and contention wait times.

This information can also be retrieved from SQL using the crdb_internal

.node_transaction_statistics table.

Workload Optimization | 471

Review of Workload Optimization Strategies
Having identified problematic statements or transactions that are affecting cluster
performance, what next?

Well, we spent Chapters 5 through 8 covering the nuances of schema design, SQL
tuning, and transactional implementations. These are the foundational practices for a
robust CockroachDB application.

However, when faced with a badly performing CockroachDB database, you don’t
usually have the luxury of going back to the drawing board and redesigning your
application. Usually, you’re looking for relatively quick fixes that can improve perfor‐
mance without major application redesign. Let’s look at a few ideas.

Indexing
It’s great to see a poorly performing SQL statement and realize that a new index will
save the day. Take the following statement for example:

SELECT SUM(revenue) as revenue
 FROM rides r
 JOIN users u ON
 (u.id = r.rider_id)
 WHERE u.name = 'Michael Jimenez'
 AND u.address = '13579 Campbell Camp';

The statement’s execution plan will look something like this:

 distribution: local
 vectorized: true

 • group (scalar)
 │
 └── • hash join
 │ equality: (rider_id) = (id)
 │
 ├── • scan
 │ missing stats
 │ table: rides@rides_pkey
 │ spans: FULL SCAN
 │
 └── • filter
 │ filter: (name = 'Michael Jimenez')
 AND (address = '13579 Campbell Camp')
 │
 └── • scan
 missing stats
 table: users@users_pkey
 spans: FULL SCAN

 index recommendations: 2

472 | Chapter 15: Cluster Optimization

 1. type: index creation
 SQL command: CREATE INDEX ON movr.public.rides (rider_id)
 STORING (revenue);
 2. type: index creation
 SQL command: CREATE INDEX ON movr.public.users (name, address);

This is a classic unindexed “bad query”; both the initial lookup and subsequent JOIN
are based on full table scans. The initial query against the users table is based on
name and address—columns that almost certainly should be indexed if this query is
to be run regularly.

The unindexed JOIN between rides and users represents a coding error more than
an indexing error. Both tables have primary keys that are prefixed with the CITY
column—which allows the MovR application to be optimized for a multiregion
deployment. The JOIN clause should have been expressed as follows:

FROM rides r
JOIN users u ON
 (u.id = r.rider_id AND u.city = r.city)

Although you would be technically correct to throw this SQL back to the developer
(especially if you were the developer!), in an emergency, you might consider creating
an index simply on rider.rider_id. This would immediately reduce the footprint
of the SQL. Once the SQL JOIN condition was correctly recoded, this index could be
removed.

Keep in mind, however, that creating indexes puts a substantial load on the cluster
during the index creation process and can have a significant impact on write perfor‐
mance when in place.

For more information about indexing and schema design, see Chapter 5. For effective
application design strategies, see Chapter 6. For SQL tuning strategies, see Chapter 8.

Ad Hoc or Analytic Queries
CockroachDB is primarily intended to support transactional workloads. However, all
databases are subject to analytic-type queries. Sometimes these queries are used to
satisfy reports that are part of an application, but sometimes users will perform ad
hoc analytic queries for business intelligence purposes.

Queries that aggregate large amounts of information can impact transactional state‐
ments by overwhelming cluster resources and by increasing contention. Full table
scans of massive tables might create I/O overloads, smother memory caches, and
overwhelm inter-node network traffic. Sorts in analytic queries can also require large
amounts of disk I/O and/or memory.

If analytical statements really must be run on base tables, then the use of AS OF
SYSTEM TIME can reduce the latency and contention involved in these statements.

Workload Optimization | 473

By using AS OF SYSTEM TIME, we avoid the chance that a statement that reads
active ranges might need to be retried. By adding just a short delay—AS OF SYSTEM
TIME '-1m' for instance—we can obtain a dramatic reduction in the SQL statements
contention footprint.

To protect transactional workloads at the role level, consider creating a role for the
purpose of performing analytical queries and modifying its default settings as shown
in the following example.

Create a table to query:

CREATE TABLE orders (
 id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
 customer_id UUID NOT NULL,
 ts TIMESTAMPTZ NOT NULL DEFAULT now(),
 total DECIMAL NOT NULL
);

Create a role with sensible default configurations for analytical queries. These config‐
urations will prevent complex, long-running queries from impacting the database’s
ability to service critical transactional workloads:

CREATE ROLE analytics WITH login;
GRANT SELECT ON * TO analytics;

ALTER ROLE analytics SET default_transaction_use_follower_reads = 'on';
ALTER ROLE analytics SET default_transaction_priority = 'low';
ALTER ROLE analytics SET default_transaction_read_only = 'on';
ALTER ROLE analytics SET statement_timeout = '10m';

SELECT session_variables, default_values
FROM [SHOW DEFAULT SESSION VARIABLES FOR ROLE analytics];

 session_variables | default_values
---+-----------------
 default_transaction_use_follower_reads | on
 default_transaction_priority | low
 default_transaction_read_only | on
 statement_timeout | 10m

Connect to the database as the analytics user and confirm the default settings:

cockroach sql --url "postgres://analytics@localhost:26257?sslmode=disable"

SHOW default_transaction_use_follower_reads; -- on
SHOW default_transaction_priority; -- low
SHOW default_transaction_read_only; -- on
SHOW statement_timeout; -- 600000 (ms)

Queries made by this user will run as low-priority, read-only, follower read transac‐
tions; limiting their impact on the database’s higher priority transaction workloads.

474 | Chapter 15: Cluster Optimization

Cluster Balance
In the iconic 1980s movie The Karate Kid, Mr. Miyagi advises his pupil, “In all things
have balance.” Nowhere is this advice more pertinent than in a distributed database.

The ability to scale workloads across multiple machines is predicated on the ability
to distribute load equitably across the cluster. If there’s a single node that is doing
more work than other nodes, then that node may become the limiting factor on per‐
formance, and efforts to scale the system by adding more nodes could be ineffective.

The DB Console provides many views that can be used to determine if a cluster is
balanced. For instance, in Figure 15-2, we see a cluster in which one node appears
to be almost completely idle, while another node is very busy and the remainder are
somewhere in between. This is a cluster that is wasting the resources of the idle node
and may see a bottleneck form on the busiest node.

Figure 15-2. CockroachDB Console CPU by node

I/O is another strong indicator of overall balance. In Figure 15-3, we see a cluster in
which I/O on three of the five nodes is significantly higher.

Cluster Balance | 475

Figure 15-3. CockroachDB Console I/O by node

Causes of Imbalance
Imbalances in cluster load are usually caused by one of the following factors:

• “Hot” ranges•
• Incorrectly configured load balancing•
• Changes in cluster topology•

Let’s look at each in turn.

476 | Chapter 15: Cluster Optimization

Hot ranges
Hot ranges are ranges that are heavily hit by specific queries.

In the replication dashboard, you might see one node with significantly higher query
rates than the others, such as in Figure 15-4.

Figure 15-4. CockroachDB Console queries per node

If the range is being updated as well as read, you’ll see high I/O on the leaseholder
and replicator nodes, such as in Figure 15-5.

Cluster Balance | 477

Figure 15-5. CockroachDB Console disk writes per node

In the logs, you might see messages like this:

I211106 06:50:33.731061 244 kv/kvserver/store_rebalancer.go:240 ⋮
 [n5,s5,store-rebalancer]
3280 considering load-based lease transfers for s5 with 199.88 qps (mean=44.41,
upperThreshold=144.41)
I211106 06:50:33.783731 244 kv/kvserver/store_rebalancer.go:288 ⋮
 [n5,s5,store-rebalancer]
3281 ran out of leases worth transferring and qps (199.85)
is still above desired threshold
(144.41); considering load-based replica rebalances

The first step is to identify the hot ranges. We can get hot ranges from the console
at the status/hotranges endpoint (https://<nodeAddress>:8080/_status/hotranges), as
shown in Figure 15-6.

478 | Chapter 15: Cluster Optimization

Figure 15-6. CockroachDB Console hot ranges endpoint

You could download this data and analyze it programmatically. For instance, the
following JavaScript code will take the output of /status/_hotranges and print the top
10 ranges in the cluster:

const fs = require('fs');

async function main() {
 const unsortedRanges=[];
 let ranges = await fs.readFileSync('hotranges.json','utf8');
 let rangeJson=JSON.parse(ranges);
 Object.keys(rangeJson.hotRangesByNodeId).forEach((node)=>{
 let hotRanges=rangeJson.hotRangesByNodeId[node];
 hotRanges.stores.forEach((store)=>{
 store.hotRanges.forEach((range)=>{
 unsortedRanges.push({node,storeId:store.storeId,
rangeId:range.desc.rangeId,
queriesPerSecond:range.queriesPerSecond});
 });
 });
 });
 unsortedRanges.sort((a, b) => a.queriesPerSecond > b.queriesPerSecond && -1
|| 1);
 for (let ic=0;ic<10;ic++)

Cluster Balance | 479

 console.log(unsortedRanges[ic]);
}

main();

Alternatively, you can use the cockroach debug zip command to extract a full
diagnostic debug file. Inside that file, the script hot-ranges.sh will print out the
hottest ranges on the cluster:

$ cockroach debug zip cockroachDebug.zip --host=mbp1.local \
 --certs-dir=cockroach/certs
establishing RPC connection to mbp1.local:26257...

writing cockroachDebug.zip
requesting data for debug/events... writing: debug/events.json
requesting data for debug/rangelog... writing: debug/rangelog.json
….
writing: debug/pprof-summary.sh
writing: debug/hot-ranges.sh

$ /tmp unzip cockroachDebug.zip
Archive: cockroachDebug.zip
 inflating: debug/events.json
 inflating: debug/rangelog.json
…
 inflating: debug/hot-ranges.sh
$ /tmp cd debug
$ debug bash hot-ranges.sh
./nodes/2/ranges/230.json: "queries_per_second": 1690.8093415717535,
./nodes/2/ranges/4.json: "writes_per_second": 274.54947854147895
./nodes/3/ranges/4.json: "writes_per_second": 272.13645921782273

Once we’ve found the hot ranges, we can look at the crdb_internal.ranges table to
see what tables and keys are associated with the range:

defaultdb> \set display_format=records

SELECT table_name, start_pretty, end_pretty, replicas, lease_holder,
 round(range_size / 1048576) mb
 FROM crdb_internal.ranges
WHERE range_id = 230;

-[RECORD 1]
table_name | tweet_likes
start_pretty | /Table/77/1/500/31
end_pretty | /Table/77/1/1000/21
replicas | {1,2,4}
lease_holder | 2
mb | 14

480 | Chapter 15: Cluster Optimization

Now that we’ve found the hot range, we can try a few things. In order of descending
difficulty, they are:

• Configure CockroachDB to split ranges more aggressively based on load•
• Split the ranges manually•
• Redesign the application to avoid the hot ranges•

In this example, we’ve found that the hot range belongs to the tweet_likes table.
Looking at the DB Console, we see that the most active statement against that table is
this one:

UPDATE tweet_likes
 SET tweet_likes = tweet_likes + _
 WHERE (tweeter = $1) AND (tweet_id = $2)

It increments a tweet count for a specific tweet. Now, as we know, some X (formerly
Twitter) users are more popular than others, and at any given point in time, some
tweets are going viral and getting lots of “likes.” So it’s these viral tweets from key
influencers that are causing hotspots.

By default, CockroachDB will split ranges based on load, provided that
kv.range_split.by_load.enabled is set to true. So if it’s not already set to true,
you probably want to do so now:

SET CLUSTER SETTING kv.range_split.by_load.enabled=true;

The setting kv.range_split.load_qps_threshold defines when a range will be split.
By default, it splits when it exceeds 2,000 queries per second (QPS). In our output, it
looks like that hot range is at about 1,690 QPS. Maybe we should lower that value so
that ranges will split at a lower query rate—say 400 QPS:

movr> SET CLUSTER SETTING kv.range_split.load_qps_threshold = 400;

If this still fails to break up the hot range issue, we could try manually splitting the
ranges. To do this, you need insight into what individual rows are being hit, which
requires some application instrumentation or analysis of data. For instance, if we
have good reason to believe that X user 50 is responsible for our hotspots, we could
issue a command like this to split up their tweets into separate ranges:

movr> ALTER TABLE tweet_likes SPLIT AT VALUES (50,1),(50,2),(50,9),(50,20);
 key | pretty | split_enforced_until
-------------------+--------+--------------------------------------
 \325\211\272\211 | /50/1 | 2262-04-11 23:47:16.854776+00:00:00
 \325\211\272\212 | /50/2 | 2262-04-11 23:47:16.854776+00:00:00
 \325\211\272\221 | /50/9 | 2262-04-11 23:47:16.854776+00:00:00
 \325\211\272\234 | /50/20 | 2262-04-11 23:47:16.854776+00:00:00

Cluster Balance | 481

Note that we’ve created some pretty small ranges here. But as vendors of expensive
disks like to say, “Disk is cheap.” We might even have one range with a single tweet—
that tweet gets so many likes that we wanted to isolate its I/O from all other tweets.

Manual splitting doesn’t tend to work very well as a reactive strategy; if the automatic
splitting hasn’t solved the problem, it’s most likely a problem that can’t be solved by
splitting. That might be because the hotspot is either a single row that is “atomic” and
can’t be split any further or the hotspot is moving (based on an incrementing ID or
timestamp), and no stable split point can be found.

Manual splits, therefore, often are a preemptive technique: suppose X user 50 is
going to appear in the World Cup Finals tomorrow; you may wish to create some
preemptive splits around them, so you don’t have to wait for the auto-splitter to
notice when the traffic starts.

Unfortunately, there are times when the application design creates hotspots that
cannot be resolved by server configuration. If all sessions in an application read
and/or write from a single row, then we have few options unless we can change the
application design. Sometimes these sorts of global counters can be partitioned into
multiple rows and aggregated when needed. There’s also the case—outlined in some
detail in Chapter 5—where using monotonically increasing primary keys leads to hot
ranges. The use of UUID-based identifiers is the most effective solution here.

In a production scenario, it’s not usually possible to change the primary key on a hot
table. However, you could try implementing hash-sharded indexes on monotonically
incrementing keys—this procedure is also outlined in Chapter 5.

Load balancing
Failures in load balancing are a common cause of imbalanced workload. Although
any node in the cluster can serve as a gateway node for handling queries, it’s impor‐
tant that the gatekeeper responsibilities be distributed evenly across the cluster;
otherwise, the dedicated gateway node may become overloaded. Figure 15-7 shows an
example. A workload has been initiated in which the supplied connection string listed
only the first node in the cluster (gubuntu1.local). Although gubuntu1 allocates
work to other members of the cluster (particularly, the leaseholders of the ranges
involved), the responsibilities of performing the gateway functions are sufficient to
unbalance the workload.

482 | Chapter 15: Cluster Optimization

Figure 15-7. CockroachDB leaseholders and query load

A similar effect can occur if a load balancer is misconfigured. In Chapter 10, we
described how to configure load balancers for on-premises and other deployments.
It’s important that the load balancer configuration always is up-to-date with the node
topology. For instance, if you add a node to a self-hosted cluster behind a haproxy
load balancer, you should modify the haproxy.cfg file to include that new node and
restart the load balancer.

Cluster Balance | 483

Changes in cluster topology
As nodes are added or removed from the cluster, rebalancing of ranges may cause a
transitory imbalance in load. These are generally not a frequent or serious concern,
but if you have a node that has sporadic connection issues, you might see the
disruption in workload balance as the cluster copes with the disconnection and
reconnection.

Figure 15-8 shows how query balance is affected by rebalancing operations. During
a period in which some nodes of the cluster were unavailable, ranges were redistrib‐
uted, resulting in a temporary period of imbalance.

Figure 15-8. Cluster performance during rebalancing

484 | Chapter 15: Cluster Optimization

Tuning Cloud Deployments
The advice in this chapter relating to workload optimization applies equally to all
deployment types—self-hosted or cloud—although our motivations might change.
In a self-hosted on-premises deployment, we might optimize a workload to control
response time. In a Cloud Basic or Standard environment, we might perform the
same optimization to control our billing rate.

However, a lot of the recommendations in this chapter with respect to hardware
tuning, cluster balance, and so on really apply only to self-hosted deployments. It’s
one of the advantages of CockroachDB Cloud deployments that they take care of the
fine-tuning of hardware and network configuration.

Admission Control
A well-provisioned CockroachDB cluster may still encounter performance bottle‐
necks at the node level, as stateful nodes can develop hotspots that last until the
cluster rebalances itself. When hotspots occur, they should not cause failures or
degraded performance for important work.

Admission control is designed to prioritize work to avoid these issues. When admis‐
sion control is enabled, CockroachDB sorts request and response operations into
work queues by priority, giving preference to higher-priority operations. Internal
operations critical to node health, such as node liveness heartbeats, are high priority.
The admission control system also prioritizes transactions that hold locks, to reduce
contention by releasing locks in a timely manner. Admission control is disabled by
default. To enable admission control:

• Set the admission.kv.enabled cluster setting to true for work performed by the•
KV storage system.

• Set the admission.sql_kv_response.enabled cluster setting to true for work•
performed in the SQL layer when receiving KV responses.

• Set the admission.sql_sql_response.enabled cluster setting to true for work•
performed in the SQL layer when receiving responses from Distributed SQL.

We recommend enabling admission control on all layers if you decide to use admis‐
sion control. The Overload dashboard displays metrics relevant to the admission con‐
trol system. It is available from the Metrics section of the DB Console. The dashboard
displays indicators relevant to the admission control system, such as CPU utilization,
storage engine health, and status of the admission control system. Figure 15-9 shows
the Overload dashboard.

Cluster Balance | 485

Figure 15-9. CockroachDB Console Overload dashboard

Network
We’ve waxed lyrical about the advantages of distributed databases throughout this
book. However, it’s important to recognize that a distributed database system adds
additional latencies to database operations. Many operations involve multiple nodes
—but the time taken to transmit information between the nodes of the cluster adds to
overall execution time.

Network latency is a factor in almost all database requests, but in a monolithic
database like MySQL or PostgreSQL, the only network latency we need to consider
is that between the client and the database server. In a distributed system such
as CockroachDB, we have to add in the network time for all the communication
between the nodes. You may recall from Chapter 2 how a transaction involves
network communication between the client, transaction coordinator, leaseholders,
and replica nodes (see Figure 2-12).

486 | Chapter 15: Cluster Optimization

Because there is so much more network latency in a distributed SQL system, the
motivation to maintain low network latencies within the cluster is particularly strong.

The DB Console provides a view of the latency between the nodes in a cluster on the
Network Diagnostics page. Figure 15-10 shows an example.

Figure 15-10. CockroachDB Console Network Diagnostics

The expected network latency between nodes in a cluster is dependent on your
topology. The latency between nodes in different geographic regions is bound to be
higher than nodes in the same data center.

For nodes within a private data center, we’d generally expect latencies under 10
ms. For nodes located in the same continent, 30 to 80 ms is typical. Between conti‐
nents, latencies of several hundred ms are not unusual. Cloudping (https://cockroa.ch/
3DXcPYo) maintains a real-time report on latencies between AWS data centers that
might give you an idea of the sorts of latencies experienced in the real world.

Network | 487

https://cockroa.ch/3DXcPYo

For nodes within the same region, using a private network between nodes can help
reduce network latency by avoiding any disruption of inter-node communication by
wider network activity. In this scenario, each node is started with --listen-addr
instead of --advertise-addr to denote the private network IP address or fully
qualified domain name (FQDN) of each node. Nodes use the private network (https://
cockroa.ch/3x0GxGH) to communicate with each other and communicate with clients
over the public network. Setting up a private network is probably not warranted on
performance grounds alone, but if one is present, you might as well use it.

In a multiregion deployment, there’s probably going to be a limit to what you can
do to reduce latency between regions—although we know of one case in which IP
routing had been configured in such a way that regions B and C couldn’t talk to each
other directly, and their packets were transparently routed through region A. This
showed up as higher-than-expected latency on the network matrix for those regions.

More generally, you can avoid cross-region traffic in the following ways:

• REGIONAL BY ROW tables can be used to locate rows in the regions in which•
they are most likely to be accessed, thus reducing the chance that cross-region
lookups will be needed. This is particularly important for rows that are frequently
updated and which might otherwise require cross-regional consensus.

• GLOBAL tables are perfect for relatively static tables that are read from every•
location.

• Reading from regional tables can be enhanced by using “follower” reads (e.g.,•
a SELECT with AS OF SYSTEM TIME). Nonvoting replicas of data are maintained
outside the core region, and if a SELECT uses AS OF SYSTEM TIME, these slightly
“stale” copies can be read locally.

See Chapter 11 for more details on optimizing multiregion performance.

Memory Optimization
As with virtually all database systems, CockroachDB uses memory to avoid disk I/O.
There are broadly two areas of memory that each node configures:

• The KV store cache keeps copies of blocks of KV store data in memory, avoiding•
disk I/Os when data is read from the store. Its size is defined by the --cache
startup parameter.

• The SQL cache includes sort and hash areas and intermediate data sets. Its size is•
defined by the --max-sql-memory startup parameter.

488 | Chapter 15: Cluster Optimization

https://cockroa.ch/3x0GxGH

It’s not easy to size these caches precisely, so most of the time, we recommend
assigning about 35% of total system memory to each cache. These values are not the
default settings, so it’s important that when you configure a production node, you
explicitly allocate the memory areas, as in the following fragment of a system start
file:

ExecStart=/usr/local/bin/cockroach start --certs-dir=certs
--advertise-addr=gubuntu2 --join=gubuntu1,gubuntu2,gubuntu3
--locality=region=us-west-1,zone=us-west-1a
--max-sql-memory=.35 --cache=.35

Key-Value Cache
We can measure the effectiveness of the KV store cache by examining the met‐
rics rocksdb.block.cache.hits and rocksdb.block.cache.misses. These metrics
reflect the number of times a wanted piece of data was found in the cache and the
number of times it was not found, resulting in a disk I/O:

defaultdb> SELECT *
FROM crdb_internal.node_metrics
WHERE name IN ('rocksdb.block.cache.usage',
 'rocksdb.block.cache.hits',
 'rocksdb.block.cache.misses')
;
 store_id | name | value
-----------+----------------------------+----------------
 5 | rocksdb.block.cache.hits | 5.8032604e+07
 5 | rocksdb.block.cache.usage | 6.7350942e+07
 5 | rocksdb.block.cache.misses | 396948

Note that these metrics are currently still prefixed with rocksdb even though they now
record statistics from the newer Pebble KV store (https://cockroa.ch/3PnUXsi). Also,
remember that this query picks up statistics for just one node.

High relative values for rocksdb.block.cache.misses might indicate that a larger
cache might reduce I/O, although only trial-and-error modifications to cache sizes
will prove that hypothesis. Nevertheless, if you have a system that appears to be
overloaded with read I/Os, then increasing the cache size—possibly in conjunction
with increasing the memory footprint of the node itself—might be effective.

Key-Value Cache | 489

https://cockroa.ch/3PnUXsi

max-sql-memory
The max-sql-memory setting controls the size of the memory area used to store
temporary result sets for multistage SQL operations for sort and hash areas relating to
joins, ordering, and grouping. Unlike the information in the KV cache, the SQL cache
is transitory for a statement. Once a SQL statement completes, the information is
discarded. If the amount of memory required by a SQL statement exceeds the amount
available, then the SQL might fail with an error like this:

pq: sql: memory budget exceeded: 282746880 bytes requested,
8434251776 bytes in budget

Even if your application is not reporting this error, it still could be that max-sql-
memory is insufficient because some memory operations will “spill” to disk rather than
fail. In the DB Console Statement Details page, the statistic “max scratch disk usage”
will reveal the amount of disk used when memory is exceeded.

The amount of memory needed in max-sql-memory will depend largely on the
complexity of the SQL your system must accommodate. You can see the memory
requirements for individual SQL statements using EXPLAIN ANALYZE:

movr> EXPLAIN ANALYZE
SELECT v.TYPE,sum(revenue) FROM rides r
JOIN vehicles v ON (v.city=r.city AND r.vehicle_id=v.id)
GROUP BY v.type
ORDER BY 2 desc;
 info

 planning time: 1ms
 execution time: 54.9s
 distribution: full
 vectorized: true
 rows read from KV: 10,697,726 (1.8 GiB)
 cumulative time spent in KV: 1m31s
 maximum memory usage: 86 MiB
 network usage: 326 MiB (26,104 messages)

This statement should need only 86 MiB of SQL memory.

Theoretically, if you have a workload that performs only simple single-row lookups,
you won’t need much SQL memory, and you might get better performance from
allocating that memory to --cache. On the other hand, if there are a lot of complex
analytical queries, you might need to increase -max-sql-memory. If in doubt, it’s best
to leave the two memory areas at the recommended settings of 35%.

490 | Chapter 15: Cluster Optimization

Host Memory
Whatever changes you make to memory configuration, it’s absolutely critical to
ensure that the OS itself does not run out of memory.

In a self-hosted deployment, you can use the vmstat command to show available
memory:

$ vmstat -s
 16398036 K total memory
 10921928 K used memory
 10847980 K active memory
 3778780 K inactive memory
 1002340 K free memory
 4236 K buffer memory
 4469532 K swap cache
 0 K total swap
 0 K used swap
 0 K free swap

You should pay attention to active memory, which represents memory currently
allocated to a process, and used swap, which indicates how much memory has been
swapped to disk. If active memory is approaching total memory, you may be about to
experience a memory shortage.

Used swap should generally be zero. Indeed, the CockroachDB team recommends
completely disabling virtual memory on production machines (https://cockroa.ch/
3K2Ky0V).

Disk I/O
A lot of tuning and optimization measures are designed to reduce disk I/O overhead.
Even in the age of fast SSD devices, disk I/O remains far slower than memory or
CPU operations and typically competes with network time as the biggest drag on
distributed SQL performance.

Disk I/O is inevitable. We can reduce some large amount of read disk I/O through
memory caching, but any busy CockroachDB database will generate significant I/O.
I/O itself is not a problem unless it becomes a bottleneck.

The “Disk Ops in Progress” chart is one place we might see an indication of a disk
I/O bottleneck (Figure 15-11). If there are significant operations “in progress,” then it
probably means that the disk on that node is becoming overloaded.

Disk I/O | 491

https://cockroa.ch/3K2Ky0V

1 You might need to install the sysstat and jq packages to run this example.

Figure 15-11. CockroachDB Disk Ops in Progress

On a self-hosted cluster, you can look at raw OS statistics to determine if I/O is
problematic:1

$ iostat -xm -o JSON sdc 5 2 |jq
 {
 "avg-cpu": {
 "user": 45.97,
 "nice": 0,
 "system": 3.63,
 "iowait": 1.81,
 "steal": 0,
 "idle": 48.59
 },
 "disk": [
 {
 "disk_device": "sdc",

492 | Chapter 15: Cluster Optimization

 "r/s": 0.4,
 "w/s": 49.2,
 "rkB/s": 15.2,
 "wkB/s": 2972,
 "rrqm/s": 0,
 "wrqm/s": 0.4,
 "rrqm": 0,
 "wrqm": 0.81,
 "r_await": 15.5,
 "w_await": 42.55,
 "aqu-sz": 2.08,
 "rareq-sz": 38,
 "wareq-sz": 60.41,
 "svctm": 0.87,
 "util": 4.32
 }
]
 }

aqu-sz represents the length of the disk queue. Values close to 0 indicate that the
device is under no stress; values above 1 indicate that the disk is frequently busy.
The r_await statistic indicates the average time to service a read I/O request in milli‐
seconds. Values greater than 10 ms may indicate that the device is either overloaded
or under-configured.

If you determine that the I/O subsystem is struggling, then you have a couple of
options:

• Reduce the amount of I/O•
• Get faster disks•
• Allocate more disks•

Reducing the amount of I/O is largely the result of workload tuning (indexes, etc.)
that has been the subject of many previous portions of this book. We might also see if
allocating more memory to cache can help.

Otherwise, we are looking at increasing I/O bandwidth by using faster or more disks.
On a cloud system, we can potentially change our disk type to higher I/O-provisioned
devices. On a self-hosted on-premises system, we can look at upgrading our disks
from (for instance) mid-tier MLC SSD devices to higher-speed SLC or PCI devices.
We discussed the considerations for choosing disk devices in Chapter 9.

It’s also possible to improve I/O bandwidth by increasing the number of physical disk
devices attached to a host. Multiple disks can either be striped (RAID 0) to provide
greater throughput or the CockroachDB node can be launched with multiple --store
flags. We discussed the pros and cons of each approach in Chapter 9.

Disk I/O | 493

The other obvious way to address an I/O bottleneck is to distribute the I/O load
across a larger number of nodes…which is the subject of our next and final section.

Scaling Out
We started this book by describing the objectives of the CockroachDB database. To
paraphrase Chapter 1, a core design goal of CockroachDB is scalability—to allow
cluster performance to scale predictably as the number of nodes increases.

We’d be the last to recommend that you solve all performance problems by adding
nodes to a cluster. While adding nodes will often—though not always—resolve
performance problems, it’s not always the most cost-effective or fastest option. On-
premises, adding nodes costs money and usually takes a significant amount of time.
In the cloud, adding nodes adds directly to the cost of your cluster. If you can resolve
a performance problem by adding an index or taking another cost-effective measure,
that’s preferable to adding nodes. Furthermore, there are some performance issues—
those relating to hot ranges in particular—that cannot be resolved by simply adding
more nodes.

However, when you’ve done your best to optimize your workload and node configu‐
rations, scaling out your CockroachDB cluster is exactly what you’re supposed to do.
There are CockroachDB clusters running with hundreds of nodes in production, so
you’re definitely not traveling into uncharted territory.

We described the process for adding nodes to the cluster in Chapter 14. Most of the
time, once the new node is added, performance throughput will adjust automatically.

In general, we want to ensure that all nodes in the cluster are roughly equivalent in
terms of hardware capacity. However, because the sweet spot for price-performance
changes over time (even for cloud-based VMs), you may find yourself tempted to add
new nodes that exceed the capacity of existing nodes. That is perfectly fine, but over
time you should endeavor to upgrade the older nodes in the cluster to the new node
configuration. Indeed, the process of “repaving” a cluster involves periodically and
systematically upgrading nodes in the cluster to a new configuration.

Summary
In this chapter, we’ve looked at some of the ways to improve the performance of
a running cluster. There are typically two modes in which we approach cluster
performance—systematic tuning and “firefighting.” Both modes are valid, but we’d
encourage as much systematic tuning as possible to avoid the sort of performance
crises that typically lead to firefighting.

494 | Chapter 15: Cluster Optimization

The most important factor in cluster performance is workload. Therefore, our first
step when evaluating cluster performance is to ensure that there are no anomalous or
poorly tuned workloads.

Balancing workload across all nodes of the cluster is critical. Imbalance is usually
caused either by a misconfiguration of load balancing or “hot” ranges. We discussed
how to address these issues.

Network latency and disk I/O are major factors in almost all database workloads. We
need to ensure that neither of these resources is a bottleneck.

Once we’ve confirmed that our workload, network, and node configuration are opti‐
mal, then it’s time to consider scaling the cluster by adding new nodes to the cluster.
Although we don’t recommend scaling out as a universal panacea for all performance
issues, it’s what CockroachDB was designed for and definitely not something to be
nervous about.

This is the last chapter in the book. We hope you find it a useful reference for work‐
ing with CockroachDB. Remember, though, that there are myriad resources available
to you. In particular, the CockroachDB documentation (https://cockroa.ch/47U4JuR),
YouTube Channel (https://cockroa.ch/3zGnpSa), and Cockroach University (https://
cockroa.ch/41Ep7iy) are constantly being expanded, and there is a rich community
(https://cockroa.ch/4eR3f6I) of fellow CockroachDB users, most of whom are more
than ready to collaborate. Good luck, and feel free to reach out!

Summary | 495

https://cockroa.ch/47U4JuR
https://cockroa.ch/3zGnpSa
https://cockroa.ch/41Ep7iy
https://cockroa.ch/4eR3f6I

Index

A
ACID (atomic, consistent, isolated, durable), 7
ad hoc queries, optimization and, 473-474
aggregation, 300-302
alerts

Datadog, 445-446
monitoring, 434-436

Alpha language, 8
ALTER BACKUP command, 381
ALTER TABLE statement (SQL), 109
Amazon Time Sync Service, 338
anti-joins, 86-87, 297-299
application code, database migration, 241-242
application silos, migration and, 218
architecture (see cluster architecture)
arrays, 93-94
artificial keys, 137
AS OF SYSTEM TIME backup, 380-381
async/await style, 178
atomic, consistent, isolated, durable (ACID), 7
atomicity, 7
attributes, tuples, 5
authentication, 403

advanced, 424
GSSAPI, 424
single-sign on, 424
standard, 423-424

authorization, 403
privilege management, 425-427
user management, 425
views, 427-428

availability, 14
monitoring, 436
single-region deployment, 320

availability zones, 360
Avro, 122, 257
AWS

access keys, 222, 252
Amazon Time Sync Service, 338
authentication, 220
firewalls, configuring, 413
regions, 361

AWS KMS, 381
AWS Load Balancing, 349
AWS Outpost, 19
AWS PrivateLink, 319, 406-409

B
backups, 376

ALTER BACKUP command, 381
AS OF SYSTEM TIME, 376, 380-381
BACKUP command, 377
configuring, 392-393
data history, 381
database-level, 379
destinations, 378
encrypted, 381
full backups, 379
incremental, 380
locality-aware, 387
scheduling, 384-386, 392-393
SHOW BACKUP command, 382
table level, 379
validation, 390-391
versus high availability, 376

ballast files, 343-344
BEGIN statement (SQL), 123

497

benchmarking, single-region deployment,
320-322

BigQuery, 218
block cache, 50
Bloom filters, 48-49
Bose, 18

C
CA (certificate authority), creating certificates,

340-341
caching

client-side, 192-194
migration and, 217

CALL statement (SQL), 114-115
capacity planning, deployment, 320-322
CDC (change data capture), 213

changefeeds, 216
consuming programmatically, 248
Enterprise, 254-257
streaming, 245-247
syntax, 252

cloud sinks, 252-253
Core CDC, 245-247
Enterprise, 245, 249
Kafka and, 256-257
migration and, 216
Pulsar and, 257-259
queries, migration, 250-256
Snowflake and, 259-263
webhook sinks, 254

certificate authority (CA), creating certificates,
340-341

certificates, 340-341
authority key, 62
server certificates, 415-416

change data capture (see CDC)
changefeeds

Enterprise, 254-256
sending to Kafka, 256-257
sending to Pulsar, 257-259
sending to Snowflake, 259-263

programmatic use, 248-249
streaming, 245-247
syntax, 252

CIDR (Classless Inter-Domain Routing), 404
client-side caching, 192-194
client/server model, RDBMS and, 8
clock skew, 40-41
Cloud API, 437-441

cloud deployment, 322-324
clock synchronization, 338-340
load balancers, 349-350
logs, 453
self-hosted, 324-325

cloud sinks, 252-253
cloud storage, migration and, 219-220

importing from, 222-223
cloud, mainframe migration to, 242-263
Cluster API, monitoring and, 441-442
cluster architecture

database clients, 22
gateway servers, 22
key ranges, 22
leaseholder nodes, 22
load balancer processes, 22
nodes, 22
ranges, 24
wire protocol (PostgreSQL), 22

cluster balance, 475-482
admission control, 485
load balancing, 482-483
topology changes, 484-485

cluster regions, 44
clusters

Advanced, 440
creating, Cloud API, 437
databases, listing, 73
full-cluster restores, 388
initializing, 344-345
Kubernetes, 64-66
Kubernetes deployment, 352-354
nodes, adding, 456-457
replication and, 394
scaling, 438
Standard, 438
Terraform, 66-70
version upgrade, 454-456

CMEKs (customer managed encryption keys),
418-422

CockroachDB
availability, 14
consistency, 14
geo-partitioning, 14
naming, 13
performance, 14
portability, 14
release history, 16-17
scalability, 14

498 | Index

SQL compatibility, 14
transactional workloads, 15

CockroachDB Cloud
Advanced, 319-328
backups, 377
Basic, 57-59, 317-319
deployment, 313, 316-317
security and, IP allowlist, 404
Standard, 319

Codd, Edgar, 5-6
column families, 28
columns, 99

computed columns, 101, 288-289
definitions, 99
leading columns, 280
projections, 191-192
replication to avoid joins, 147-148
STORING clause, 30

comma-separated values (see CSV)
COMMIT statement (SQL), 124
Common Table Expressions, 90-91, 111
composite indexes, 160-161

performance, 162
selection guidelines, 163

composite primary keys, 143
computed columns, 101, 288-289
connection objects, 176, 177

cursor() method, 177
connection pools, 179-183
consistency, 7, 14
consolidating databases (see migration)
constraints, 5
containers, Docker, 60-62
Core CDC, 245-247
correlated subqueries, 89
covering indexes, 161

performance, 162
CRD (CustomResourceDefinition), 351
CREATE FUNCTION statement (SQL),

111-113
CREATE INDEX statement (SQL), 97, 104-107
CREATE STATISTICS command, 309-310
CREATE TABLE AS SELECT statement (SQL),

109
CREATE TABLE statement (SQL), 97-104
CREATE VIEW statement (SQL), 111
cross joins (tables), 87
CRUD (create, read, update, delete) operations,

176-179

CSV (comma-separated values), 122
database migration, 231

cuneiform tablets, 3
cursor() method, 177
customer managed encryption keys (CMEKs),

418-422
CustomResourceDefinition (CRD), 351

D
Darnell, Ben, 13
data definition language (see DDL)
data export, migration, 231-232, 243-244
data integration, migration and, 216-217
data manipulation language (see DML)
data modeling

data warehousing designs, 138
logical data modeling, 134-138
physical design, 138

tables, 139-140
primary keys, 137-138
relational, 134
special-purpose designs, 138
time-series designs, 138

data models
denormalization, 147

cautions, 147
horizontal partitioning, 150-151
joins, avoiding, 147-148
repeating groups, 151
summary tables, 149
vertical partitioning, 149-150

normalization, 135-137
data purging, migration and, 217
data types, 101-103

vectors, 107-109
data warehousing

data modeling designs, 138
migration and, 218

database as a service (DBaaS), 316-317
database consolidation (see migration)
database management system (DBMS), 3
database migration

application code updates, 241-242
data export, 231-232
IMPORT INFO statement, 235
MOLT Fetch, 233-235
PostgreSQL import, 236
schemas, 232-233
synchronization, 237-241

Index | 499

databases
backups, 379
clients, 22
clusters, listing, 73
demonstration databases, 71-73
flat files, 4
hierarchical models, 4
history, 3-13
IMS (Information Management System), 4
maintenance, migration and, 215
migrating from, 224

DDL extraction and conversion, 224
MySQL DDL extraction, 228-229
Oracle DDL extraction, 225-227
PostgreSQL DDL extraction, 229-230
SQL Server DDL extraction, 228

monolithic, 9
network models, 4
relational (see relational databases)
speed optimization, 469-471

Datadog, 445-446
DB Console, 75

cluster balance, 475-482
admission control, 485
load balancing, 482-483

user creation, 345-346
DBaaS (database as a service), 316-317
DBeaver, 231
DBMS (database management system), 3
dbms_metadata package, 225
DBTools, transaction retries, 199
DDL (data definition language), 127

database migration, 224
conversion, 230-231
MySQL DDL extraction, 228-229
Oracle DDL extraction, 225-227
PostgreSQL DDL extraction, 229-230
SQL Server DDL extraction, 228

deadlocks, 39, 205
declarative programming languages, 83
DELETE statement (SQL), 120-121

WHERE clause, 90
demonstration databases, 71-73
denormalization, 147

cautions, 147
horizontal partitioning, 150-151
joins, column replication, 147-148
repeating groups, 151
summary tables, 149

vertical partitioning, 149-150
deployment

business requirements, 314
cloud deployment, 322-324

logs, 453
self-hosted, 324-325

CockroachDB Cloud, 313, 316-317
Advanced, 319-328
Basic, 317-319
Standard, 319

fully managed, 313, 316-317
Kubernetes, 350

client pods, 354
cluster initialization, 352-354
CRD (CustomResourceDefinition), 351
load balancing, 354-356

multiregion (see multiregion deployment)
options comparison, 314-317
self-hosted, 313

bare-metal, 326
cloud platform, 324-325
high availability, 329-332
Kubernetes, 327-328
on-premises, 325-327

single-region (see single-region deploy‐
ment)

VMs (virtual machines), 324-325
detection, monitoring and, 434
Devsisters, 18
diagnostics, monitoring and, 434
disaster recovery

backup scheduling, 392-393
human errors and, 393
replication

LDR (logical data replication), 398-402
PCR (physical cluster replication),

394-398
disk failure, self-hosted deployment, 329
disk I/O, 491-494
disk sorts, 303-305
disk space, troubleshooting, 460, 464
distributed consensus, 45
distributed SQL, 275
distribution layer

follower reads, 46
geo-partitioning, 44
gossip protocol, 42
latencies, 44
leaseholders, 42

500 | Index

meta ranges, 41
multiregion distribution, 44
Raft, 45-46

leaseholders, 46
range splits, 43-44
timestamps, 46-47

DML (data manipulation language), 31
optimizing, 305-306
statement reordering, 203

Docker containers, 60-62
document models (JSON), 151

antipatterns, 153
avoiding joins, 154-156
document database advantages, 152
inverted indexes, 153-154
many-to-few relationships, 155
one-to-few relationships, 154
one-to-many relationships, 153

domains, DDL conversion in database migra‐
tion, 230

DoorDash, 18
drivers, 75

programming, 176
DROP TABLE statement (SQL), 110
dual writes, 214
durability, 7
Dynamo, 10

E
egress perimeter control, 405-406
encrypted backups, 381
encryption, 415-416

CMEKs (customer managed encryption
keys), 418-422

data keys, 416
store key, 416

encryption at rest, 403, 416-422
end-to-end monitoring, 434
Enterprise CDC, 245, 249

changefeeds, 254-256
sending to Kafka, 256-257
sending to Pulsar, 257-259
sending to Snowflake, 259-263

entities, converting to tables, 139-140
ETL (extract, transform, and load)

CDC queries, 250
migration and, 216

execution, vectorized, 27

EXPLAIN ANALYZE (DEBUG) command
(SQL), 276-277

EXPLAIN ANALYZE command (SQL),
272-273

EXPLAIN command (SQL), 267-272
DISTSQL, 275
OPT, 274
VERBOSE, 273

EXPORT command (SQL), 391
expression indexes, 165-167
extract, transform, and load (see ETL)

F
failover regions, migration and, 215-216
firewalls, 403

configuration
AWS, 413
GCP, 412-413

IP allowlist, 404
Linux, 410-411

Uncomplicated Firewall, 410
perimeter control, egress, 405-406
single-region deployment, 336
VPC Peering

AWS PrivateLink, 406-409
GCP PSC (Private Service Connect),

409-410
flat files, 4
Fluentd, 452
follower reads, 46
foreign key constraints, 146-147
Form3, 19
full backups, 379
full cluster restores, 388
full-text indexes, 167-169
fully managed deployment, 313, 316-317

G
gateway servers, 22
GCP (Google Cloud Platform)

firewall configuration, 412-413
PSC (Private Service Connect), 409-410
TCP Proxy Load Balancing, 350

geo-partitioning, 14, 44
GKE (Google Kubernetes Engine), 350
global tables, 44

locality rules, 363
Go, 79-80

DBTools transaction retries, 199

Index | 501

Google Cloud Platform (see GCP)
Google Kubernetes Engine (GKE), 350
gossip protocol, 42
Grafana, 444
groups, repeating, 151
GSSAPI authentication, 424
GUI clients, 70

H
HAProxy load balancer, 348
Hard Rock Digital, 19
hash joins, 290, 294-296
hash-sharded indexes, 107, 170

primary keys, 144
Hibernate, 207-210
high availability, 45

active-active design, 45
active-passive design, 45
movr schema, 372-373
multi-active design, 45
replication layer, 45

active-active design, 45
active-passive design, 45
multi-active design, 45

versus backups, 376
Homebrew package manager, CockroachDB

software installation, 53
horizontal partitioning, denormalization,

150-151
horizontal scaling, 216
hot rows, transaction retries, 201-202
HTTP endpoints, monitoring and, 436
HTTP storage, migration and, 219

I
IaC (infrastructure as code), 66
IDMS (Integrated Database Management Sys‐

tem), 4
IMPORT INTO statement (SQL), 122

database migration, 235
importing data

from cloud storage, 222-223
from userfile storage, 220-222
performance, migration, 223

IMS (Information Management System), 4
in-memory trees, 47
incremental backups, 380
indexes, 29

break-even point, 157-159

composite, 160-161
performance, 162
selection guidelines, 163

computed columns, 288-289
covering indexes, 161

performance, 162
CREATE INDEX statement, 104-107
effectiveness measures, 170-172
expression, 165-167
full-text, 167-169
hash-sharded, 107, 170

primary keys, 144
hints, 285-286
inverted, 30, 106, 163

JSON documents, 153-154
spatial indexes, 169-170

KV (key-value) storage system, 24
leading columns, 280
lookups, 279-281
merges, 282
null values, 163
overhead, 159
partial, 164
selectivity, 157
sort-optimizing, 164
spatial, 169-170
STORING clause, 30
workload optimization, 472-473

Information Management System (IMS), 4
information schema, 129
infrastructure as code (IaC), 66
Ingres, 8
inner joins (tables), 85
INSERT statement (SQL), 115-117, 185
installation

CockroachDB software
Linux, 55-56
macOS, 53-55
Microsoft Windows, 56

Docker containers, 60-62
Kubernetes clusters, 64-66
remote connections, 63
secure servers, 62-63
Terraform clusters, 66-70

Integrated Database Management System
(IDMS), 4

internet and early databases, 9
inverted indexes, 30, 106, 163

JSON documents, 153-154

502 | Index

spatial indexes, 169-170
inverted joins, 290
IP addresses, CIDR, 404
IP allowlist, 404
IP network prefix, 404
isolation, 7

serializable isolation, 8, 32
isolation levels, 32, 39

J
Jaeger, 277
Java, 77-78
Java Database Connectivity (JDBC) driver

addBatch method, 186
batch results, 188
executeBatch method, 186
JdbcTemplate, 187

joins
anti-joins, 86-87, 297-299
column replication, 147-148
cross joins, 87
hash joins, 290, 294-296
hints, 296-297
inner joins, 85
inverted joins, 290
JSON documents, 154-156
lookup joins, 290-294
merge joins, 290
optimized, 289
outer, 86, 297-299
right outer joins, 86

JSON, 95-96
document models, 151

antipatterns, 153
avoiding joins, 154-156
document database advantages, 152
inverted indexes, 153-154
many-to-few relationships, 155
one-to-few relationships, 154
one-to-many relationships, 153

K
Kafka

CDC queries, 250
Enterprise changefeeds, 256-257

key ranges, 22
key-value storage system (see KV storage sys‐

tem)
keys, 6

kill signal for server shutdown, 63
Kimball, Spencer, 13
Kubernetes, 316

clusters, 64-66
deployment, 350

client pods, 354
cluster initialization, 352-354
CRD (CustomResourceDefinition), 351
load balancing, 354-356

GKE (Google Kubernetes Engine), 350
minikube clusters, 64
self-hosted deployment, 327-328

KV (key-value) storage system, 23
cache, 489-491
indexes, 24, 29

inverted indexes, 30
STORING clause, 30

tables, 27

L
large language model (LLM), 107
latency

distribution layer and, 44
failover regions, 215

lateral subqueries, 89
LDR (logical data replication), 394, 398-402
leading columns, 280
leaseholder nodes, 22, 42

Raft protocol, 46
leases, 24
Linux

CockroachDB software installation, 55-56
firewalls, 410-411

Uncomplicated Firewall, 410
glibc library, 336
libcurses library, 336
Ubuntu file descriptor limit, 336

LLM (large language model), 107
load balancers, 22

cloud platforms, 349-350
HAProxy, 348
Kubernetes deployment, 354-356
on-premises deployment, 347-349

locality rules, 44
tables, 363-364

locality-aware backups, 387
log-structured merge (see LSM)
logical data modeling, 134-138

converting to physical, 139-141

Index | 503

physical design
attributes, mapping to columns, 140-141
primary keys, 141-146

subtypes, 139
logical data replication (LDR), 394, 398-402
logs

channels, 446, 449
cloud deployment, 453
file-based destinations, 452
filters, 451
format, 450
logging security, 403, 428-430
logging to Fluentd, 452
redaction, 453
troubleshooting and, 460
YAML files, 447

lookup joins, 290-294
LSM (log-structured merge), 47

in-memory trees, 47
on-disk trees, 47
WAL (write-ahead log), 47

M
machine learning (ML), 107
macOS, installation on, 53-55
mainframe migration to cloud, 242-263
many-to-few relationships, JSON documents,

155
materialized views, 149
Mattis, Peter, 13
memory

caches, 194
performance optimization, 488

merge joins, 290, 294-296
meta ranges, 41
metrics export, monitoring, 444-445
Microsoft Windows, CockroachDB software

installation, 56
Migrate Off Legacy Technology (MOLT) tool,

224, 233-235
migration

application silos, 218
caching tiers and, 217
CDC (change data capture), 216, 245-247

changefeeds, 248
Enterprise, 249
queries, 250-256

data export, 243-244
data integration fragility, 216-217

data purging and, 217
data warehousing, 218
database consolidation, 214-215
database maintenance and, 215
ETL (extract, transform, and load), 216
failover regions, 215-216
from other databases, 224

application code updates, 241-242
data export, 231-232
DDL conversion, 230-231
DDL extraction and conversion, 224
IMPORT INFO statement, 235
MOLT Fetch, 233-235
MySQL DDL extraction, 228-229
Oracle DDL extraction, 225-227
PostgreSQL DDL extraction, 229-230
PostgreSQL import, 236
schema migration, 232-233
SQL Server DDL extraction, 228
synchronization, 237-241

import performance, 223
loading data

cloud storage, 219-220, 222-223
HTTP storage, 219
nodelocal storage, 219
userfile storage, 219, 220-222

mainframes to cloud, 242-263
polling and, 217
queue coherence, 216

ML (machine learning), 107
MOLT (Migrate Off Legacy Technology) tool,

224, 233-235
MOLT Fetch, 233-235
monitoring, 433

alerts, 434-436
availability, 436
Cloud API, 437-441
Cluster API, 441-442
Datadog, 445-446
detection and, 434
diagnostics and, 434
end-to-end, 434
Prometheus, 443-444

monolithic database systems, 9
movr schema

creating, 365
high availability, 372-373
multiregion database, conversion to,

368-369

504 | Index

REGIONAL BY ROW configuration,
369-372

regional survival goals, 372-373
restores, 388
super regions, 373-374

multiregion databases, converting to, 368-369
multiregion deployment

locality rules, 363-364
planning, 365-374
regions, 359-361

region failure, 361-363
super regions, 373-374

zones, 359-361
zone failure, 361-363

multiregion distribution, 44
multiregion topology, 313
MVCC (multiversion concurrency control), 33

storage layer, 50

N
natural keys, 137
Netflix, 17
networks

failure, self-hosted deployment, 330-331
performance optimization, 486-488
troubleshooting, 462-463

node failure, self-hosted deployment, 329-330
Node.js, 76-77, 178

transactions, 194
nodelocal storage, migration and, 219
nodes, 22

adding to clusters, 456-457
certificates, 340-343
configuration, 342-343
decommissioning, 457-460
leaseholder nodes, 22
leases, 24
liveness, 461-462
load balancers and, 347
Raft leader, 22, 24
schema changes, 31

nonblocking transactions, 47
normalized data models, 135-137
NoSQL, 11
null values in indexes, 163

O
object-relational mapping (ORM) frameworks,

206-210

objects
connection objects, 176, 177
ResultSet objects, 177
statement objects, 177

OLAP (Online Analytical Processing) data‐
bases, 218

on-disk trees, 47
on-premises deployment

clock synchronization, 337-338
load balancer, installing, 347-349

one-to-few relationships, JSON documents, 154
one-to-many relationships, JSON documents,

153
Online Analytical Processing (OLAP) data‐

bases, 218
operating system, single-region deployment,

336-337
optimistic transaction models, 201
optimization (see performance optimization)
optimizer statistics

automatic, 308
manually collected, 309-310
viewing, 307

ORM (object-relational mapping) frameworks,
206-210

outer joins, 297-299
right outer join, 86

P
Parallel Commits, 36-37
parameterized statements, 183-185
partial indexes, 164
partitioning

geo-partitioning, 14, 44
horizontal, 150-151
vertical, 149-150

passwords, CockroachDB Cloud Basic, 59
PCR (physical cluster replication), 394-398
Pebble storage engine, 47
performance, 14

indexes, 159
migration and, 223

performance optimization
cluster balance, 475-482

admission control, 485
load balancing, 482-483
topology changes, 484-485

disk I/O, 491-494
KV store cache, 489-491

Index | 505

memory, 488
networks, 486-488
performance firefighting, 467-469
performance tuning, 467-469
scaling out, 494
workloads, 469

ad hoc queries, 473-474
detection, 469-471
indexes, 472-473
optimization strategies, 472

perimeter control, 405-406
pessimistic transaction models, 201
physical cluster replication (PCR), 394-398
physical design, 138

attributes, mapping to columns, 140-141
foreign keys, constraints, 146-147
primary keys, 141

attribute ordering, 145
composite keys, 143
UUID-based, 142-143

tables, converting from entities, 139-140
polling, migration and, 217
portability, 14
PostgreSQL, 8

imports, database migration, 236
JDBC driver, 77-78
ORMs, 207
SERIAL data type, 143
wire protocol, 22, 25

pre-relational databases, 4-5
prepared statements, 183-185
primary keys, 103

artificial, 137
attributes, ordering, 145
composite keys, 143
data modeling, 137-138
DDL conversion in database migration, 230
hash-sharded indexes, 144
natural, 137
physical design, 141-146
UUID-based, 142-143

primary region, 360
privileges, 424

authorization, 425-427
principle of least privilege, 437

procedures, stored procedures, 114-115
programming

batch inserts, 185-187
caching, client-side, 192-194

connection objects, 176, 177
cursor() method, 177

connection pools, 179-183
CRUD operations, 176-179
drivers, 176
languages, 75-80

declarative, 83
Node.js, 178
parameterized statements, 183-185
prepared statements, 183-185
projections, 191-192
result set pagination, 188-190
ResultSet objects, 177
SQL injection, 183
statement objects, 177

projections, 191-192
Prometheus, 443-444
public certificate authority, 340
Pulsar, Enterprise changefeeds, 257-259
Python, 78-79

Q
QUEL language, 8
queries

ad hoc, optimization and, 473-474
CDC (change data capture), migration,

250-256
SQL (Structured Query Language),

SELECT, 84-97
subqueries, 88-89

Common Table Expressions, 90-91
correlated subqueries, 89
lateral subqueries, 89

table distribution, 283-285
time travel queries, 203-204

query languages, 5
query optimizer (see performance optimiza‐

tion)
queue coherence, migration and, 216

R
Raft leader, 22, 24
Raft logs, 376
Raft protocol, 45-46

leaseholders, 46
RAG (retrieval-augmented generation), 109
range splits, 43-44
ranges, 24

506 | Index

RDBMS (relational database management sys‐
tem), 8

READ COMMITTED isolation level, 32
READ UNCOMMITTED isolation level, 32
read/write conflicts, 39-40
read/write segregation, 215
recovery point objective (RPO), 215
recovery time objective (RTO), 215
RedShift, 218
region-level survival goals, 44
regional by row tables, 363
REGIONAL BY ROW tables, 369-372
regional tables, 44

locality rules, 363
regions

multiregional deployment, 359-361
region failure, 361-363

primary region, 360
self-hosted deployment, 331-332
super regions, 373-374

relational data modeling, 134
relational database management system

(RDBMS), 8
relational databases

Codd, Edgar, 5-6
pre-relational databases, 4-5
RDBMS (relational database management

system), 8
transactions, 7

ACID, 7
SQL, 8

remote connections, installation, 63
REPEATABLE READ isolation level, 32
repeating groups, denormalization, 151
replication

LDR (logical data replication), 394, 398-402
PCR (physical cluster replication), 394-398

replication factor, single-region deployment,
320

replication layer, 45
active-active design, 45
active-passive design, 45
multi-active design, 45

RESTORE command, 387-390
restores, 387

backup locations, 389
full-cluster, 388
movr schema, 388

result sets, 176

pagination, 188-190
ResultSet objects, 177
retrieval-augmented generation (RAG), 109
roles, 424
ROLLBACK statement (SQL), 124
Route, 20
RPO (recovery point objective), 215
RTO (recovery time objective), 215

S
SAVEPOINT statement (SQL), 124
scalability, 14, 494

performance optimization and, 494
scaling

clusters, 438
horizontal, 216
vertical, 216

scanning tables, 286-288
schemas

data modeling (see data modeling)
information schema, 129
initializing, 71-73
migration, 232-233
table descriptor, 31

secure servers, 62-63
security

audits, 428-430
authentication, 403

advanced, 424
standard, 423-424

authorization, 403
privilege management, 425-427
user management, 425
views, 427-428

best practices, 431
certificates, 62
encryption, 415-416
encryption at rest, 403, 416-422
firewalls, 403

AWS configuration, 413
GCP configuration, 412-413
Linux, 410-411

logging and, 403
logs, 428-430
Microsoft Azure, 414
perimeter control, egress, 405-406
server certificates, 415-416
TLS (Transport Layer Security), 403
VPC Peering

Index | 507

AWS PrivateLink, 406-409
GCP PSC (Private Service Connect),

409-410
SELECT statement (SQL), 84

anti-joins, 86-87
arrays, 93-94
AS OF SYSTEM TIME clause, 126
CROSS JOIN, 87
EXCEPT operator, 87
FOR SHARE clause, 125
FOR UPDATE clause, 124
FROM clause, 85
GROUP BY operator, 88
INNER JOIN operation, 85
INTERSECT operator, 87
JSON, 95-96
nested, 88-89
ORDER BY clause, 91-92
OUTER JOIN operation, 86
RIGHT JOIN operation, 86
subqueries, 88-89

Common Table Expressions, 90-91
correlated subqueries, 89
lateral subqueries, 89

summary, 97
UNION ALL operator, 87
UNION operator, 87
WHERE clause, 90
window functions, 92-93

self-hosted deployment, 313
bare-metal, 326
cloud platform, 324-325
disk failure, 329
Kubernetes, 327-328
network failure, 330-331
node failure, 329-330
on-premises, 325-327
regions, 331-332
zones, 331-332

SEQUEL, 8
sequential keys, gaps in, 145
SERIAL data type, 143
serializable isolation, 8, 32
SERIALIZABLE isolation level, 32
server certificates, 415-416
servers

gateway servers, 22
secure servers, 62-63
shutting down, 63

single-node, 59-60
Docker containers, 60-62

SET CLUSTER command (SQL), 308
SHOW BACKUP command (SQL), 382-383
SHOW REGIONS command (SQL), 368
SHOW STATISTICS command (SQL), 307
single-node server, 59-60

Docker containers, 60-62
single-region deployment, 319

availability, 320
ballast files, 343-344
benchmarking, 320-322
capacity planning, 320-322
certificate creation, 340-341
cloud platforms

clock synchronization, 338-340
load balancers, 349-350

clusters, initializing, 344-345
firewall, 336
node configuration, 342-343
on-premises

clock synchronization, 337-338
load balancers, 347-349

operating system, 336-337
regions configuration, 350
replication factor, 320
scaling up, 320
user creation, 345-346
zone configuration, 350

single-region topology, 313
Snowflake, 218

Enterprise changefeeds, 259-263
snowflake schema, 138
software installation

Linux, 55-56
macOS, 53-55
Microsoft Windows, 56

software stack SQL layer, 25-27
sort-optimizing indexes, 164
sorted strings tables (see SSTables)
sorting, 300-302

disk sorts, 303-305
Spanner, 12, 15
spatial indexes, 169-170
Spreedly, 19
SQL (Structured Query Language), 8

administrative commands, 128
aggregation, 300-302
ALTER TABLE statement, 109

508 | Index

BEGIN statement, 123
CALL statement, 114-115
commands, 74
COMMIT statement, 124
compatibility, 14, 83
connection objects, 176
CREATE FUNCTION statement, 111-113
CREATE INDEX statement, 97, 104-107
CREATE TABLE AS SELECT statement,

109
CREATE TABLE statement, 97-104
CREATE VIEW statement, 111
DELETE statement, 120-121

WHERE clause, 90
distributed, 11-13
distributed SQL, 275
DML optimization, 305-306
DROP TABLE statement, 110
execution times, 266-267
EXPLAIN ANALYZE (DEBUG) command,

276-277
EXPLAIN ANALYZE command, 272-273
EXPLAIN command, 267-272

DISTSQL, 275
OPT, 274
VERBOSE, 273

IMPORT INTO statement, 122
INSERT statement, 115-117, 185
joins

anti-joins, 297-299
hash, 290, 294-296
hints, 296-297
inverted, 290
lookup, 290-294
merge, 290, 294-296
outer, 297-299

optimizer
automatic statistics, automatic, 308
manually collected statistics, 309-310
viewing statistics, 307

parameterized statements, 183-185
PostgreSQL, 8
result sets, 176
ROLLBACK statement, 124
SAVEPOINT statement, 124
SELECT statement, 84, 85

anti-joins, 86-87
arrays, 93-94
AS OF SYSTEM TIME clause, 126

CROSS JOIN, 87
FOR SHARE clause, 125
FOR UPDATE clause, 124
FROM clause, 85
group operations, 88
INNER JOIN, 85
JSON, 95-96
nested, 88-89
ORDER BY clause, 91-92
OUTER JOIN, 86
RIGHT JOIN, 86
set operations, 87-88
subqueries, 88-89
summary, 97
WHERE clause, 90
window functions, 92-93

slow SQL, 265-267
sorting, 300-302

disk sorts, 303-305
table lookups, 279

computed columns, 288-289
index hints, 285-286
index lookups, 279-281
index merges, 282
joins, optimized, 289
query distribution, 283-285
scans, full, 286-288
zigzag joins, 282

TRUNCATE statement, 122
UPDATE statement, 118-119

WHERE clause, 90
UPSERT statement, 119-120

SQL injection, 183
SQL layer, 25-27

optimizer, 26
SSTables (sorted strings tables), 47

Bloom filters, 48-49
updates, 49

STAGING transactions, 36
star schema, 138
statement objects, 177
statistics, optimizer

automatic, 308
manually collected, 309-310
viewing, 307

storage
Pebble storage engine, 47
self-hosted deployment, 326
troubleshooting and, 460

Index | 509

storage layer
block cache, 50
LSM (log-structured merge), 47
MVCC, 50
SSTables (sorted strings tables), 47

Bloom filters, 48-49
updates, 49

stored procedures, 114-115
subqueries, 88-89

Common Table Expressions, 90-91
correlated subqueries, 89
lateral subqueries, 89

summary tables, denormalization, 149
super regions, 373-374
survival goals, 44
system clock

skew, 40-41
synchronization, 40-41, 337-340

troubleshooting, 461
System R, 8
system time, transactions and, 203-204

T
tab-separated values (TSV), 122
table descriptor, 31
table lookups, 279

index hints, 285-286
index lookups, 279-281
index merges, 282
indexes, computed columns, 288-289
joins, optimized, 289
query distribution, 283-285
scans, full, 286-288
zigzag joins, 282

tables, 7
altering, 109
backups, 379
column families, 28
columns, 98

computed columns, 101
definitions, 99
mapping attributes to, 140-141
nullability, 99
projections, 191-192

Common Table Expressions, 90-91
constraints, 98, 103-104
converting from entities, 139-140
CREATE INDEX statement, 97

CREATE TABLE AS SELECT statement,
109

CREATE TABLE statement, 97-104
deleting data, 120-121
dropping, 110
foreign keys, 99, 110, 146-147
importing data, 122
inserting data, 115-117
joins

anti-joins, 86-87
cross joins, 87
inner joins, 85
outer joins, 86
right outer joins, 86

KV (key-value) storage system, 23, 27
listing, 74
locality rules, 363-364
materialized views, 149
partitions, 98
primary keys, 103

attribute ordering, 145
composite keys, 143
physical design and, 141-146
UUID-based, 142-143

REGIONAL BY ROW, 369-372
regional tables, 44
rows, removing, 122
schema changes, 31
summary tables, 149
updating and inserting data, 119-120
updating data, 118-119
virtual, 111

TCP Proxy Load Balancing, 350
Terraform, 66-70
third normal form (TNF), 6

primary keys, 135, 137
time to live (TTL), row-level, 210-212
time-series, data modeling, 138
timestamps

closed, 46-47
system clock time, 40-41

TLS (Transport Layer Security), 403
TNF (see third normal form)
trace files, Jaeger, 277
tracing SQL, 267-277
transaction layer, 32

MVCC principles, 33
Parallel Commits, 36-37
read/write conflicts, 39-40

510 | Index

system clock, 40-41
transaction cleanup, 37
transaction flow, 37-38
transaction workflow, 34
write intents, 35

transaction records, 36
transactional workloads, 15
transactions, 7

ACID, 7
approaches summary, 206
BEGIN statement (SQL), 123, 194
blocked reads, 39
COMMIT statement (SQL), 124
deadlocks, 39, 205
DML statement reordering, 203
elapsed time, 202-203
errors, ambiguous, 204
isolation levels, 32

per-transaction setting, 39
Node.js, 194
nonblocking transactions, 47
optimistic models, 201
pessimistic models, 201
priorities, 39, 205
retries

automatic, 198-199
contention, 201-202
errors, 195-196
FOR UPDATE statement, 199-201
implementing, 197-198

ROLLBACK statement (SQL), 124
SAVEPOINT statement (SQL), 124
SELECT AS OF SYSTEM TIME statement

(SQL), 126
SELECT FOR SHARE statement (SQL), 125
SELECT FOR UPDATE statement (SQL),

124
serializable isolation, 32
SQL, 8
STAGING transactions, 36
system time and, 203-204
time-travel queries, 203-204

Transport Layer Security (TLS), 403
triggers, DDL conversion in database migra‐

tion, 230
troubleshooting

client connectivity, 464
clock synchronization, 461
disk space, 460, 464

logs and, 460
networking, 462-463
node liveness, 461-462
support resources and, 464

TrueTime (Spanner), 12
TRUNCATE statement (SQL), 122
TSV (tab-separated values), 122
TTL (time to live), row-level, 210-212
tuples, 5, 7

U
UDFs (user-defined functions), 111-113
UPDATE statement (SQL), 118-119

WHERE clause, 90
UPSERT statement (SQL), 119-120
URLs, 56
user-defined functions (UDFs), 111-113
userfile storage, migration and, 219-222
users, 424

authorization, 425
creating, 345-346

UUID-based primary keys, 142-143

V
VECTOR data type, 107-109
vectorized execution, 27
vectors, 107-109
vertical partitioning, denormalization, 149-150
vertical scaling, 216
views

materialized views, 149
virtual tables, 111

virtual tables, 111
VMs (virtual machines)

deployment, 313
deployment to, 324-325

VPC Peering
AWS PrivateLink, 406-409
GCP PSC (Private Service Connect),

409-410

W
WAL (write-ahead log), 47
webhook sinks, 254
windows, SQL statements, 92-93
workload optimization, 469

ad hoc queries, 473-474
detection, 469-471

Index | 511

optimization strategies, 472
indexes, 472-473

workloads, transactional, 15
write intents, 35
write-ahead log (WAL), 47

Z
zigzag joins, 282

zone-level survival goal, 44
zones

availability zones, 360
multiregional deployment, 359-361

zone failure, 361-363
self-hosted deployment, 331-332

512 | Index

About the Authors
Guy Harrison is CTO at ProvenDB and a software professional with more than
20 years of experience in database design, development, administration, and opti‐
mization. He is the author of Next Generation Databases (Apress), MongoDB Perfor‐
mance Tuning (Apress), Oracle Performance Survival Guide (Prentice Hall), MySQL
Stored Procedure Programming (O’Reilly), AI, Quantum Computing and Web3 (self-
published), and many other books and articles on database technology.

Jesse Seldess is VP of education at Cockroach Labs, where he leads the documenta‐
tion and training teams. He has nearly 20 years of experience in technical documen‐
tation and has built teams from the ground up at Cockroach Labs and AppNexus
(now Xandr).

Ben Darnell is the cofounder and chief architect at Cockroach Labs, where he
built the distributed consensus protocols that underpin CockroachDB’s transactional
model. He started his career at Google and then went on to a series of startups where
he saw firsthand the need for better scalable storage systems.

Rob Reid is Cockroach Labs’ technical evangelist and a software developer from
London, England. In his career, he has written backend, frontend, and messaging
software for the police, travel, finance, commodities, sports betting, telecoms, retail,
and aerospace industries. He is the author of Practical CockroachDB: Building Fault-
Tolerant Distributed SQL Databases (Apress) and Understanding Multi-Region Appli‐
cation Architecture (O’Reilly) and has two CockroachDB tattoos.

Colophon
The animal on the cover of CockroachDB: The Definitive Guide is an Australian bush
cockroach. There are more than four hundred species of native cockroaches that
live in the bush, which tend to be more visually appealing than their American or
German counterparts.

A striking example of an Australian bush cockroach is the Mardi Gras cockroach
(Polyzosteria mitchelli), also known as Mitchell’s diurnal cockroach. This wingless, flat
insect has a blue-black body with yellow stripes along its back, and is primarily found
in the arid regions of western and south Australia.

Native cockroaches feed on pollen, bark, and tree leaves. Some species have even
adapted to eating decomposing wood, akin to termites. Native cockroaches are an
important part of their ecosystem, serving as a valuable source of food for inverte‐
brates, mammals, frogs, and reptiles. To repel such predators, certain species release a
pungent odor when in danger.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Insects Abroad. The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Building Cock⁠roach⁠DB
	Next Steps
	Why We Wrote This Book
	Who This Book Is For
	How This Book Is Organized
	Conventions Used in This Book
	Accessing the Book’s Images Online
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Guy Harrison
	Jesse Seldess
	Ben Darnell
	Rob Reid

	Part I. Introduction to Cock⁠roach⁠DB
	Chapter 1. Introduction to Cock⁠roach⁠DB
	A Brief History of Databases
	Pre-Relational Databases
	The Relational Model
	Implementing the Relational Model
	Transactions
	The SQL Language
	The RDBMS Hegemony
	Enter the Internet
	The NoSQL Movement
	The Emergence of Distributed SQL

	The Advent of Cock⁠roach⁠DB
	Cock⁠roach⁠DB Design Goals
	Cock⁠roach⁠DB Releases

	Cock⁠roach⁠DB in Action
	Cock⁠roach⁠DB at Netflix
	Cock⁠roach⁠DB at Devsisters
	Cock⁠roach⁠DB at DoorDash
	Cock⁠roach⁠DB at Bose
	Cock⁠roach⁠DB at Form3
	Cock⁠roach⁠DB at Hard Rock Digital
	Cock⁠roach⁠DB at Spreedly
	Cock⁠roach⁠DB at Route

	Summary

	Chapter 2. Cock⁠roach⁠DB Architecture
	The Cock⁠roach⁠DB Cluster Architecture
	The Cock⁠roach⁠DB Software Stack
	The Cock⁠roach⁠DB SQL Layer
	From SQL to Key-Values
	Tables as Represented in the KV Store
	Column Families
	Indexes in the KV Store
	Inverted Indexes
	The STORING Clause
	Table Definitions and Schema Changes

	The Cock⁠roach⁠DB Transaction Layer
	MVCC Principles
	Transaction Workflow
	Write Intents
	Parallel Commits
	Transaction Cleanup
	Overview of Transaction Flow
	Read/Write Conflicts
	Clock Synchronization and Clock Skew

	The Cock⁠roach⁠DB Distribution Layer
	Meta Ranges
	Gossip
	Leaseholders
	Range Splits
	Multiregion Distribution

	The Cock⁠roach⁠DB Replication Layer
	Raft
	Raft and Leaseholders
	Closed Timestamps and Follower Reads

	The Cock⁠roach⁠DB Storage Layer
	Log-Structured Merge Trees
	SSTables and Bloom Filters
	Deletes and Updates
	Multiversion Concurrency Control
	The Block Cache

	Summary

	Chapter 3. Getting Started
	Installation
	Installing Cock⁠roach⁠DB Software
	Creating a Cock⁠roach⁠DB Cloud Basic Instance
	Starting a Local Single-Node Server
	Starting Up Cock⁠roach⁠DB in a Docker Container
	Starting Up a Secure Server
	Shutting Down the Server
	Remote Connection
	Creating a Kubernetes Cluster
	Creating a Cluster with Terraform

	Using a GUI Client
	Exploring Cock⁠roach⁠DB
	Adding Some Data
	Databases and Tables
	Issuing SQL
	The DB Console

	Working with Programming Languages
	Connecting to Cock⁠roach⁠DB from Node.js
	Connecting to Cock⁠roach⁠DB from Java
	Connecting to Cock⁠roach⁠DB from Python
	Connecting to Cock⁠roach⁠DB from Go

	Summary

	Chapter 4. Cock⁠roach⁠DB SQL
	SQL Language Compatibility
	Querying Data with SELECT
	The SELECT List
	The FROM Clause
	Joins
	Anti-Joins
	Cross Joins
	Set Operations
	Group Operations
	Subqueries
	Correlated Subquery
	Lateral Subquery
	The WHERE Clause
	Common Table Expressions
	ORDER BY
	Window Functions
	Other SELECT Clauses
	Cock⁠roach⁠DB Arrays
	Working with JSON
	Summary of SELECT

	Creating Tables and Indexes
	Column Definitions
	Computed Columns
	Data Types
	Primary Keys
	Constraints
	Indexes
	Vectors
	CREATE TABLE AS SELECT
	Altering Tables
	Dropping Tables
	Views
	Functions
	Procedures

	Inserting Data
	UPDATE
	UPSERT
	DELETE
	TRUNCATE
	IMPORT INTO
	Transactional Statements
	BEGIN Transaction
	SAVEPOINT
	COMMIT
	ROLLBACK
	SELECT FOR UPDATE
	SELECT FOR SHARE
	AS OF SYSTEM TIME

	Other Data Definition Language Targets
	Administrative Commands
	The Information Schema
	Summary

	Part II. Developing Applications
with Cock⁠roach⁠DB
	Chapter 5. Cock⁠roach⁠DB Schema Design
	Logical Data Modeling
	Normalization
	Don’t Go Too Far
	Primary Key Choices
	Special-Purpose Designs

	Physical Design
	Entities to Tables
	Attributes to Columns
	Primary Key Design
	Foreign Key Constraints

	Denormalization
	Replicating Columns to Avoid Joins
	Summary Tables
	Vertical Partitioning
	Horizontal Partitioning
	Repeating Groups

	JSON Document Models
	JSON Document Antipatterns
	Indexing JSON Attributes
	Using JSON or Arrays to Avoid Joins

	Indexes
	Index Selectivity
	Index Break-Even Point
	Index Overhead
	Composite Indexes
	Covering Indexes
	Composite and Covering Index Performance
	Guidelines for Composite Indexes
	Indexes and Null Values
	Inverted Indexes
	Partial Indexes
	Sort-Optimizing Indexes
	Expression Indexes
	Full-Text Indexes
	Spatial Indexes
	Hash-Sharded Indexes
	Measuring Index Effectiveness

	Summary

	Chapter 6. Application Design and Implementation
	Cock⁠roach⁠DB Programming
	Performing CRUD Operations
	Connection Pools
	Prepared and Parameterized Statements
	Batch Inserts
	Pagination of Results
	Projections
	Client-Side Caching

	Managing Transactions
	Transaction Retry Errors
	Implementing Transaction Retries
	Automatic Transaction Retries
	Using FOR UPDATE to Avoid Transaction Retry Errors
	Reducing Contention by Eliminating Hot Rows
	Reducing Transaction Elapsed Time
	Reordering Statements
	Time Travel Queries
	Ambiguous Transactions Errors
	Deadlocks
	Transaction Priorities

	Working with ORM Frameworks
	Row-Level TTL
	Summary

	Chapter 7. Application Migration and Integration
	Migration Objectives
	Database Consolidation
	Failover Regions
	Fragile Data Integrations
	Unnecessary Caching Tier
	Unnecessary Data Warehouse Workloads
	Application Silos

	Loading Data
	File Locations
	Importing from userfile Storage
	Importing from Cloud Storage
	Import Performance

	Migrating from Another Database
	Extracting and Converting DDL
	General Considerations When Converting DDL
	Exporting Data
	Migrating Schemas to Cock⁠roach⁠DB
	Loading Data into Cock⁠roach⁠DB with MOLT Fetch
	Loading Data into Cock⁠roach⁠DB with IMPORT INTO
	Directly Importing PostgreSQL or MySQL Dumps
	Synchronizing and Switching Over
	Updating Application Code

	Mainframe Migrations
	Exporting Cock⁠roach⁠DB Data
	Change Data Capture
	Core Change Data Capture
	Using the Changefeed Programmatically
	Enterprise Change Data Capture
	CDC Queries
	Change Data Capture to Kafka
	Change Data Capture to Pulsar
	Change Data Capture to Snowflake

	Summary

	Chapter 8. SQL Tuning
	Finding Slow SQL
	Explaining and Tracing SQL
	EXPLAIN ANALYZE
	EXPLAIN Options
	EXPLAIN DEBUG

	Changing SQL Execution
	Optimizing Table Lookups
	Optimizing Joins
	Join Methods
	Optimizing Sorting and Aggregation
	Disk Sorts
	Optimizing DML

	Optimizing the Optimizer
	Optimizer Statistics
	Viewing Statistics
	Automatic Statistics
	Manually Collecting Statistics

	Summary

	Part III. Deploying and Administering Cock⁠roach⁠DB
	Chapter 9. Planning a Deployment
	Know Your Requirements
	Comparison of Deployment Options
	Cock⁠roach⁠DB Cloud Basic Deployments
	Cock⁠roach⁠DB Cloud Standard Deployments
	Single-Region Advanced Deployments
	Common Planning Tasks—Advanced Deployments
	Benchmarking and Capacity Planning
	Cock⁠roach⁠DB Cloud Deployments
	Self-Hosted on a Cloud Platform
	Self-Hosted “Bare-Metal” On-Premises
	Other Self-Hosted Considerations
	Self-Hosted Kubernetes

	Configuring for Self-Hosted High Availability
	Disk Failure
	Node Failures
	Network Failure
	Zone and Region Topologies

	Summary

	Chapter 10. Single-Region Deployment
	Deploying On-Premises or On-Cloud
	Firewall Configuration
	Operating System Configuration
	Clock Synchronization On-Premises
	Clock Synchronization on Cloud Platforms
	Creating Certificates
	Configuring the Nodes
	Creating a Ballast File
	Initializing the Cluster
	Creating the First User
	Installing a Load Balancer (On-Premises)
	Cloud Load Balancers
	Configuring Regions and Zones

	Deploying on Kubernetes
	Initializing the Operator
	Initializing the Cluster
	Creating a Client Pod
	Load Balancing
	Other Kubernetes Tasks

	Summary

	Chapter 11. Multiregion Deployment
	Multiregion Concepts
	Regions and Zones
	Survival Goals
	Locality Rules
	Planning Your Multiregion Deployment

	Deploying in Multiregion
	Converting to a Multiregion Database
	Configuring Regional by Row
	Setting Regional Survival Goal
	Super Regions

	Summary

	Chapter 12. Backup and Disaster Recovery
	Backups
	The BACKUP Command
	Backup Destinations
	Full Backup
	Table- and Database-Level Backups
	Incremental Backups
	AS OF SYSTEM TIME Backup
	Encrypted Backups
	WITH REVISION HISTORY
	SHOW BACKUP
	Managing Backup Jobs
	Scheduling Backups
	Locality-Aware Backups

	Restoring Data
	Backup Validation
	Exporting Data
	Disaster Recovery Best Practices
	Backup Scheduling and Configuration
	Recovering from Human Errors

	Two–Data Center Replication
	Physical Cluster Replication
	Logical Data Replication

	Summary

	Chapter 13. Security
	Firewall Configuration
	IP Allowlist with Cock⁠roach⁠DB Cloud
	Egress Perimeter Controls
	Private Connectivity and VPC Peering
	Native Linux Firewall
	Configuring a Firewall in GCP
	Configuring a Firewall in AWS
	Configuring Ports for Microsoft Azure

	Encryption and Server Certificates
	Encryption at Rest
	Customer-Managed Encryption Keys

	Authentication Mechanisms
	Standard Authentication
	Advanced Authentication

	Authorization
	Managing Users
	Managing Privileges
	Fine-Grained Access Control with Views

	Logging and Auditing
	Security Best Practices
	Summary

	Chapter 14. Administration and Troubleshooting
	Monitoring
	Cock⁠roach⁠DB Cloud Advanced Alerts
	Cock⁠roach⁠DB Cloud Standard Alerts
	Cock⁠roach⁠DB Cloud Basic Alerts
	Availability Monitoring
	The Cloud API
	The Cluster API
	Monitoring and Alerting with Prometheus
	The Metrics Export Endpoint
	Monitoring and Alerting with Datadog

	Log Configuration
	Log Channels
	Log Format
	Filter Levels
	Log Destinations
	Logging to Fluentd
	Redaction
	Logs in Cloud Deployments

	Cluster Management
	Upgrading the Cluster Version
	Adding Nodes to a Cluster
	Decommissioning Nodes

	Troubleshooting
	Clock Synchronization Errors
	Node Liveness
	Networking Issues
	Loss of Client Connectivity
	Running Out of Disk Space
	Working with Cock⁠roach⁠DB Support Resources

	Summary

	Chapter 15. Cluster Optimization
	Tuning Versus Firefighting
	Workload Optimization
	Detecting Problem Workloads
	Review of Workload Optimization Strategies
	Indexing
	Ad Hoc or Analytic Queries

	Cluster Balance
	Causes of Imbalance
	Admission Control

	Network
	Memory Optimization
	Key-Value Cache
	max-sql-memory
	Host Memory

	Disk I/O
	Scaling Out
	Summary

	Index
	About the Authors
	Colophon

